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Abstract

The understanding of many physical and engineering problems involves run-
ning complex computational models (computer codes). With problems of this
type, it is important to understand the relationships between the input vari-
ables (whose values are often imprecisely known) and the output. The goal
of sensitivity analysis (SA) is to study this relationship and identify the most
significant factors or variables affecting the results of the model. In this pre-
sentation, an improvement on existing methods for SA of complex computer
models is suggested for use when the model is too computationally expensive
for a standard Monte-Carlo analysis. In these situations, a meta-model or sur-
rogate model can be used to estimate the necessary sensitivity index for each
input. A sensitivity index is a measure of the variance in the response that
is due to an input. Most existing approaches to this problem either do not
work well with a large number of input variables and/or they ignore the error
involved in estimating a sensitivity index. Here, a new approach to sensitiv-
ity index estimation using meta models and bootstrap confidence intervals is
proposed that appears to provide satisfactory solutions to these drawbacks.
Further, an efficient yet very effective approach to incorporate this methodol-
ogy into an actual SA is presented. Several simulation and real data examples
illustrate the utility of this approach. This framework can be easily extended
to uncertainty analysis as well.

1 Introduction

The analysis of many physical and engineering phenomena involves running complex
computational models (computer codes). It is almost universally accepted that the
sensitivity analysis (SA) and uncertainty analysis (UA) of these complex models is
an important and necessary component to overall analyses [1, 2, 3, 4, 5]. The pur-
pose of SA is to identify the most significant factors or variables affecting the model
predictions. The purpose of UA is to quantify the uncertainty in analysis results due
to the uncertainty in the inputs. A computational model that sufficiently represents
reality is often very costly in terms of run time. Thus, it is important to be able to
characterize model uncertainty and perform SA with a limited number of model runs.
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In this report, we suggest an effective procedure for SA of such expensive computer
models using meta-models and variance based sensitivity measures. This approach
has several advantages over existing procedures: (i) efficient use of computational
resources, (ii) effective handling of a very large number of input variables, and (iii)
generation of confidence interval estimates of sensitivity and/or uncertainty measures.

In general, we will consider complex computer models of the form

y = f(x) + ε, (1.1)

where y = (y1, . . . , yq) is a vector of outputs, x = [x1, x2, . . . , xp] is a vector of
imprecisely known inputs, and ε is a vector of errors (usually small) incurred by
the numerical method used to solve for y. For example, ε could result from chaotic
behavior introduced by a stopping criterion where input configurations arbitrarily
close to one another can fail to achieve convergence in the same number of iterations.
Although analyses for real systems almost always involve multiple output variables
as indicated above, the following discussions assume that a single real-valued result
of the form y = f(x) + ε is under consideration. This simplifies the notation and the
results under discussion are valid for individual elements of y.

The model f can be quite large and involved (e.g., a system of nonlinear partial
differential equations requiring numerical solution or possibly a sequence of complex,
linked models as is the case in a probabilistic risk assessment for a nuclear power plant
[6] or a performance assessment for a radioactive waste disposal facility [7]); the vector
x of analysis inputs can be of high dimension and complex structure (i.e., several
hundred variables, with individual variables corresponding to physical properties of
the system under study or perhaps to designators for alternative models).

The uncertainty in each element of x is typically characterized by a probability
distribution. Such distributions are intended to numerically capture the existing
knowledge about the elements of x and are often developed through an expert review
process. See [8] and [9] for more on the characterization of input variable uncertainty.
After the characterization of this uncertainty, a number of approaches to SA are
available, including differential analysis, variance decomposition procedures, Monte
Carlo (sampling-based) analysis, and evidence theory representations [10]. Variance
decomposition is perhaps the most informative and intuitive means with which to
summarize the uncertainty in analysis output resulting from uncertainty in individual
input variables. This procedure uses measures such as

sj =
Var(E[f(x) | xj])

Var(f(x))
(1.2)

and

Tj =
E(Var[f(x) | x(−j)])

Var(f(x))
=

Var(f(x))− Var(E[f(x) | x(−j)])

Var(f(x))
, (1.3)

where x(−j) = {x1, . . . , xj−1, xj+1, . . . , xp}, to quantify this uncertainty. The use of
these measures is reviewed in [8]. The quantity sj corresponds to the proportion
of the uncertainty in y that can be attributed to xj alone, while Tj corresponds to
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the total uncertainty that can be attributed to xj and its interactions with other
variables. These calculations require the evaluation of p-dimensional integrals which
are typically approximated via Monte Carlo sampling on the joint distribution of x.
Unfortunately, this is too computationally intensive to be feasible for most complex
computer models.

An alternative procedure to the direct evaluation of Tj and similar measures is
to use a meta-model (or surrogate) for f to perform the necessary model evaluations
([11], [12]). A meta-model, denoted f̂ , is much simpler in form and faster to evaluate
than the actual computer model. This approach involves taking a sample of size n
from the joint distribution (e.g. a simple random sample or Latin hypercube sample
[13] and [14]) and evaluating the actual computer model, f , at each of the n design
points. The data can then be used to create a meta-model for f . It is assumed
that n is a fairly modest number of model evaluations, but large enough to allow
for a flexible meta-model estimation. The most commonly used method for function
estimation is linear regression which has been used with much success for SA when
the underlying function is approximately linear. However, it is often the case that
linear regression can fail to appropriately identify the effects of the elements of x on y
when nonlinear relations are present. Rank regression works very well to identify the
strength of relationships between inputs and output in nonlinear situations as long the
relationships between inputs and output are approximately monotonic [9] and [15].
However, rank regression does not provide a meta-model as the resultant regression
model does not directly provide useful output predictions at new x locations. In
nonlinear situations, nonparametric regression methods can be used to achieve a
better approximation than can be obtained with linear regression procedures [12].

In this presentation, we describe several modern nonparametric regression meth-
ods and compare their performance in calculating sensitivity measures. We also
present a general approach to calculating confidence intervals for these measures.
This allows a practitioner to account for the variability (i.e. sampling based error)
involved in the assessment of variable importance. This presentation continues the
investigation of the use of nonparametric regression procedures in SA initiated in
[12] by presenting (i) comparisons of several state of the art meta-models, (ii) more
relevant and precisely defined sensitivity measures, (iii) confidence intervals for these
measures, and (iv) a general method for fast yet effective sensitivity analysis of com-
plex models.

In Section 2 we describe how to use a flexible meta-model to calculate sensitivity
measures and associated confidence intervals. We then discuss some of the more
useful nonparametric regression procedures available to fit meta-models in Section 3.
A simulation study to illustrate the properties of the proposed methodology is given
in Section 4. Section 5 describes an efficient procedure for implementation and gives
an example of this approach in practice. Finally a concluding discussion is given in
Section 6.
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2 Calculating Sensitivity Measures

Assume for the following that a design has been generated for the uncertain inputs
(either fixed or random) and the model has been evaluated at the design points. In
this section we consider the calculation of sensitivity indexes for two cases: (i) A
linear and/or rank regression is used to fit this data or (ii) A more flexible model is
needed.

2.1 Sensitivity Measures for Linear and Rank Regression

If the fit from linear or rank regression is adequate, then we recommend using the
familiar approach of calculating Standardized Regression Coefficients (SRCs) and
Partial Correlation Coefficients (PCCs) or the analog of these quantities for rank data
as described in [9, 16], and [17]. The main reasons for this are (i) These quantities are
familiar and simple to understand and (ii) they are very fast and easy to calculate.

If the fit from both the linear and rank regressions is inadequate, then we recom-
mend calculating the quantities described in Section 2.2 below. The definition of an
“adequate” fit is of course somewhat arbitrary. We recommend the following rule:
if the R2 value of the model is greater than a cut-off value then the fit is adequate.
In practice, the appropriate cut-off value to use is clearly problem dependent. We
discuss this issue further in Section 5.

2.2 Sensitivity Measures for More Flexible Models

When the fits from a linear and rank regression are inadequate, a more flexible meta-
model can be used. The discussion of meta-model choice is delayed until Section 3. It
suffices for the discussion here to assume we are using an appropriate meta-model to
approximate the computer model. In this case, there are two basic types of sensitivity
measures that we will consider. The first is the Tj given in Eq. (1.3), which was
proposed by Homma and Saltelli [18]. This is generally a very good single number
summary of the overall importance of an input variable. It has the interpretation
of “the total proportion of the uncertainty in y due to xj (including x′js interaction
with other variables”. It is important to stress that we will be using a meta-model,
f̂ , to carry out the necessary calculations to obtain Tj. Hence, the result is really an
estimate of the true Tj given by

T̂j =
E(Var[f̂(x) | x(−j)])

Var(f̂(x))
. (2.1)

The second measure we will use is the stepwise variance contribution, denoted
Sj. Notice that we use uppercase Sj to distinguish from the main effect variance
contribution, sj, defined in Eq. (1.2). The quantity Sj is motivated by stepwise model
fitting. When building a model in a stepwise fashion, it is informative to observe the
increase in R2 (uncertainty in y accounted for by the model) for each variable that
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enters the model. The meta-model used does not need to be constructed in a stepwise
fashion in order to use Sj. We can still obtain such stepwise measures by calculating
the following quantities from the fitted model.

Define the first variable to ”enter” the model by xj for the j that maximizes

U1,j =
Var[E(f(x)|xj)]

Var(f(x))
. (2.2)

Let a1 = arg maxj U1,j so that xa1 is the input variable that maximized U1,j. The
second variable to ”enter” is then defined by the maximizer of

U2,j =
Var[E(f(x)|xa1 , xj)]

Var(f(x))
. (2.3)

Similarly, define xa2 to be the variable that maximizes U2,j. In general, the kth variable
to ”enter” the model corresponds to the maximizer of

Uk,j =
Var[E(f(x)|xa1 , xa2 , ..., xak−1

, xj)]

Var(f(x))
. (2.4)

Now, define
Sak

= Uk,ak
for k = 1, . . . , p. (2.5)

The differences between successive Sj provide a measure of the incremental increase
in the proportion of the uncertainty explained by including the uncertainty of the jth

variable in a stepwise manner. This has a lot of intuitive appeal since practitioners
are familiar with the concept of stepwise contribution when adding a variable to an
existing model. The quantities Sj and Tj parallel the relationship between Type I
sums of squares and Type III sums of squares for regression models in the popular
SAS software ([19]).

Finally, define Ûk,ak
, k = 1, . . . , p, by replacing f with f̂ in Eqs. (2.2) - (2.4) and

let the estimate of Sj be given as

Ŝak
= Ûk,ak

for k = 1, . . . , p. (2.6)

The quantities Ŝj and T̂j in Eqs. (2.6) and (2.1) can be calculated via Monte Carlo
sampling over the x distribution; see p. 178 of [8] for details. This requires many
thousands of model evaluations to obtain accurate Monte Carlo approximations. This
is quite feasible however, because f̂ is much faster to evaluate than f .

2.3 Confidence Intervals

The biggest advancement included in this work is the introduction of confidence
intervals (CIs) for sensitivity measures estimated from meta-models. The use of
meta models for estimating sensitivity measures can be much more accurate than the
use of standard Monte Carlo methods for estimating these measures with small to
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moderate sample sizes. However, exactly how accurate these estimates are for a given
sample size is of course problem dependent. It is very important to know how much
confidence we can have in our importance measures and rankings for the individual
input variables.

By definition, a 100(1−α)% CI for Tj should contain the true value of Tj 100(1−
α)% of the time under repeated experimentation. In our case, the experiment entails
taking a sample of size n from the x distribution, evaluating the computer model at
these n design points, and then using these n values to create a confidence interval
for Tj. If we repeat this experiment say 1,000 times, we would expect 950 of the
resultant 1,000 95% CIs for Tj to contain the true value of Tj.

Such a CI for Tj can be calculated using a bootstrap approach which will be
described shortly. It might also be of interest to obtain CIs for other quantities as well.
These could be calculated using the same approach described below. It is important
to recognize that the confidence sets formed from the popular Gaussian process (or
Kriging) models are not confidence intervals by the definition above. These are really
Bayesian Credible sets as discussed in Section 3.5, which are a different entity. This
is not to say that Gaussian process models are not useful; in fact, they can be quite
useful as demonstrated in Section 4. We begin our discussion of bootstrap CIs by
reviewing the basic bootstrap.

Review of Bootstrap CIs

Let Y denote a random variable (RV) characterized by a cumulative distribution
function (CDF) F . Suppose we observe a random sample

Y = (Y1, . . . , Yn) (2.7)

from F . Now let
θ̂ = θ̂(Y ) (2.8)

be an estimate for some parameter of interest

θ = θ(F ). (2.9)

If we knew the distribution of (θ̂ − θ), we could find zα/2 and z1−α/2 such that

Pr(zα/2 ≤ θ̂ − θ ≤ z1−α/2) = 1− α, (2.10)

where Pr(A) is the probability of an event A. Then,

(θ̂ − z1−α/2, θ̂ − zα/2) (2.11)

is a (1 − α)100% CI for θ. Generally we don’t know the distribution of (θ̂ − θ) but
we can approximate it with a bootstrap distribution [20], [21].

The main idea behind the bootstrap procedure is to use an estimated CDF, F ∗,
in place of F . There are many ways to obtain F ∗ (e.g. use the empirical CDF or
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somehow parametrize F so it belongs to a family, such as Gaussian, exponential, etc.,
and estimate the parameters of that family). Once we obtain F ∗, we can mimic the
data generating process that produced Y . That is, we can draw a sample of size n
from F ∗, denoted as Y ∗ = (Y ∗

1 , . . . , Y ∗
n ). Here, Y ∗ is called a bootstrap sample to

emphasize that it is a sample from the estimated CDF, F ∗.
The most familiar bootstrap procedure is that which samples the data with re-

placement to obtain the bootstrap sample Y ∗. This is equivalent to taking a random
sample from the empirical CDF (i.e. using F ∗(y) = 1/n

∑n
i=1 I(−∞,Yi](y) where IA(x)

is the indicator function, IA(x) = 1 if x ∈ A and 0 otherwise). If the empirical CDF is
used for F ∗ the following procedure is called the nonparametric bootstrap. However,
any estimate of F can be used to draw a bootstrap sample. If the estimate F ∗ is
obtained by some other means than the empirical CDF, the following procedure is
called the parametric bootstrap.

Once a bootstrap sample Y ∗ is created, we could then calculate θ̂ for the the
bootstrap sample, that is

θ̂∗ = θ̂(Y ∗) (2.12)

where the ∗ is to emphasize that θ̂∗ is an estimate of θ which came from a bootstrap
sample. Once F ∗ is obtained the value of the parameter θ for the CDF F ∗,

θ∗ = θ(F ∗), (2.13)

is also known (or at least can be calculated).
Recall, the goal is to approximate the α/2 and 1−α/2 quantiles (zα/2 and z1−α/2)

of the Z = (θ̂ − θ) distribution. With the bootstrap procedure, these quantities are
approximated using the distribution of Z∗ = (θ̂∗ − θ∗). Denote the α/2 and 1− α/2
quantiles of the Z∗ distribution as z∗α/2 and z∗1−α/2, respectively. Sometimes it is
possible to calculate z∗α/2 and z∗1−α/2 analytically. If so, the bootstrap CI can be given
as

(θ̂ − z̃∗1−α/2, θ̂ − z̃∗α/2). (2.14)

which is an approximation to Eq. (2.11).
More often, it is necessary to approximate z∗α/2 and z∗1−α/2 using bootstrap sam-

pling. That is, generate M samples Y ∗
k, k = 1, . . . ,M , from the F ∗ distribution),

each time calculating
θ̂∗k = θ̂(Y ∗

k). (2.15)

Now order the θ̂∗k from smallest to largest. That is, let θ̂∗(j) = θ̂∗k for some k = 1, . . . ,M ,

and θ̂∗(1) ≤ θ̂∗(2) ≤ · · · ≤ θ̂∗(M), Then, let

z̃∗q = θ̂∗([qM ]) − θ∗, (2.16)

where [qM ] is the closest integer to qM , for 0 ≤ q ≤ 1. The bootstrap CI is then
given by

(θ̂ − z̃∗1−α/2, θ̂ − z̃∗α/2). (2.17)
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This is an approximation to Eq. (2.11). Notice that there are two sources of ap-
proximation error involved in creating the CI in Eq. 2.17, (i) the error involved in
approximating zα/2 and z1−α/2 with the corresponding quantities from the bootstrap
distribution, z∗α/2 and z∗1−α/2 and (i) the sampling error involved in further approxi-

mating z∗α/2 and z∗1−α/2 with z̃∗α/2 and z̃∗1−α/2. In concept the error represented in (ii)
can be made arbitrarily small by making the number of the bootstrap samples, M ,
large. The error described in (i) can only be reduced by increasing the size of the
original sample, Y . Hence the error in (ii) is generally small or negligible compared
to the error described in (i).

Under certain regularity conditions on F , F ∗ and θ̂, this procedure will produce
asymptotically correct CIs (p. 37-39, [20]). The performance of these CIs in practice
is determined by how closely the distribution of Z∗ = (θ̂∗ − θ∗) matches that of
Z = (θ̂ − θ). Of course, the goal is to have the distribution of Z∗ resemble the
distribution of Z as closely as possible. Sometimes another function of θ̂ and θ
instead of Z = θ̂∗ − θ∗ can be preferable to accomplish this. In fact, any function
of θ and θ̂, g(θ̂, θ), that can be solved for θ for a fixed θ̂ can be used to calculate
a bootstrap CI. A common alternative to the basic bootstrap is to standardize by
dividing by a variance estimate, e.g.

U =
(θ̂ − θ)√
V̂ar(θ̂)

(2.18)

and the CI is given as(
θ̂ − ũ∗1−α/2

√
V̂ar(θ̂), θ̂ − ũ∗α/2

√
V̂ar(θ̂)

)
(2.19)

where the ũ∗α/2 and ũ∗1−α/2 are calculated using

ũ∗q =
θ̂∗([qM ]) − θ∗√

V̂ar(θ̂∗)

(2.20)

in a similar manner to Eq. (2.16). This is called the t bootstrap because of the simi-
larity to the t statistic. The t bootstrap is known to speed up the rate of convergence
and perform better than the standard bootstrap (using Z instead of U) in practice
in many instances [20].

Bootstrap CIs for Tj

There are many ways to construct bootstrap CIs for the Tj in our situation. Here
we describe one form of the parametric bootstrap with which we have had rea-
sonable results. First, we construct an appropriate meta-model using the sample
{(x1, y1), . . . , (xn, yn)} to obtain an estimate, f̂ , of the computer model, f . We use
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the meta model, f̂ , as though it is the actual computer model to carry out the calcula-
tion of T̂j as defined in Eq. (2.1). For the rest of the discussion, assume that j is fixed.
However, in practice the indicated calculation would be performed for j = 1, . . . , p.

The goal is to obtain a CI for Tj; hence, we will discuss a procedure to obtain a
bootstrap distribution of

Z = T̂j − Tj. (2.21)

A CI for Tj is then given by (
T̂j − z∗1−α/2 , T̂j − z∗α/2

)
, (2.22)

where z∗1−α/2 and z∗α/2 are determined from the bootstrap distribution of Z which is
obtained as described below.

In this case, the data consists of values for (x, y); thus, F ∗ is a joint distribution
for the variables (x, y). We do not actually need to define F ∗ explicitly as we only
need to be able to draw a bootstrap sample, (x∗

i , y
∗
i ), i = 1, . . . , n, from F ∗. Once this

can be done, the bootstrap distribution of Z can be approximated by taking many
bootstrap samples (samples from F ∗) as described in the preceding subsection.

A sample, (x∗
i , y

∗
i ), i = 1, . . . , n, from F ∗ can be obtained as follows. Generate a

new sample, (x∗
1, . . . ,x

∗
n), from the same distribution, Fx, that generated the original

sample of inputs, (x1, . . . ,xn). It is assumed here that Fx is known. If Fx is not
known, then (x∗

1, . . . ,x
∗
n) can be simply set equal to the original sample (x1, . . . ,xn)

or (x∗
1, . . . ,x

∗
n) can be produced by sampling with replacement from (x1, . . . ,xn) (i.e.

sampling from the empirical CDF of x). The corresponding y values, (y∗1, . . . , y
∗
n), are

obtained by
y∗i = f̂(x∗

i ) + ε∗i , (2.23)

where the ε∗i are sampled with replacement from the model residuals εi = yi − f̂(xi),
i = 1, . . . , n. As a reminder f̂(x∗

i ) is the meta-model constructed from the original
sample, .. {(x1, y1), . . . , (xn, yn)}, but evaluated at the new sampled values of x∗

i . We
now have a sample (x∗

i , y
∗
i ), i = 1, . . . , n from F ∗. This sampling strategy assumes a

homogeneous distribution of the errors across the important input variables. If this
is not a reasonable assumption, the wild bootstrap could also be used; see p. 247-249
of [21] for more details.

Now repeat this process of obtaining a bootstrap sample as described above
M times, so that we have M independent samples of size n from F ∗. We de-
note these M samples as {(x∗

1, y
∗
1)k, . . . , (x

∗
n, y

∗
n)k}, k = 1, . . . ,M . Use each sam-

ple, {(x∗
1, y

∗
1)k, . . . , (x

∗
n, y

∗
n)k}, to construct a new meta-model, f̂ ∗k . Then, use each

f̂ ∗k to perform the calculation of Tj as in Eq. (2.1) and denote the result by T̂ ∗
j,k,

k = 1, . . . ,M . Let
Z∗

k = T̂ ∗
j,k − T̂j, (2.24)

where T̂j is the estimate of Tj obtained from the initial meta-model f̂ . Find the α/2
and (1 − α/2) sample quantiles (z∗α/2 and z∗1−α/2, respectively) from the collection

{Z∗
1 , . . . , Z

∗
M}. The CI is then given by Eq. (2.22). A technical detail is that the
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lower (or upper) limit of the CI can be less than zero (or greater than one). When
this happens the endpoint of the CI can simply be truncated so that the CI is a
subset of [0, 1]. However, we recommend shifting the interval to be a subset of [0, 1]
while maintaining its original length. Our experience suggests that the empirical
performance is better (coverages closer to the nominal value) when the interval is
shifted instead of truncated.

Bootstrap p-values can also be calculated for the null hypothesis Tj = 0. This is
accomplished by calculating a lower confidence bound (LCB) for Tj instead of a CI. A
LCB for Tj can be obtained by calculating the (1−α) quantile z∗1−α. The 100(1−α)%
LCB for Tj is then given by

Lα = T̂j − z∗1−α. (2.25)

A decision rule for an α level of significance test of hypotheses H0 : Tj = 0 vs.
Ha : Tj > 0 is given by: If Lα > 0 then reject H0, else do not reject H0 (i.e. reject H0

if T̂j > z∗1−α). The p-value for this test is defined as the smallest value of α for which
H0 can be rejected. Thus,

p-value = inf{α : T̂j > z∗1−α} (2.26)

is the desired bootstrap p-value.
The basic bootstrap quantity for Tj in Eq. (2.21) could also be scaled by a variance

estimate to produce a t bootstrap as in Eq. (2.18). This requires a variance estimate
for T̂j to be calculated for every bootstrap sample. Unfortunately, the more useful

meta-models described in Section 3 result in an f̂ that is difficult to study analytically.
As T̂j is a complex functional of f̂ , precise variance estimates of T̂j are not available in
most cases. The asymptotic variance for a similar estimator of Tj is given on p. 1453
of [22]. This estimate is not exactly valid in our case, but it could still be used to
form the t bootstrap statistic. This may produce a distribution of Z∗ which is closer
to that of Z than the basic bootstrap described above; thus, increasing the accuracy
of the bootstrap CIs.

In the test cases we have tried, however, this t bootstrap adjustment was not
effective at further increasing the accuracy of the bootstrap CIs. The use of this
adjustment is also more complicated and takes somewhat longer computationally.
Hence, we recommend using the basic bootstrap and do not provide any computa-
tional details about the t bootstrap for T̂j. However, the t bootstrap could still be
helpful in other problems than those studied here. In addition, it may be possible to
work out a more precise variance estimate for Tj based on the particular meta-model
used. This could make the increase in accuracy from the t bootstrap over the basic
bootstrap more pronounced and thus worth the additional computation. This is a
topic for further study.

3 Meta Models

The success of the strategy discussed in Section 2 depends on the performance of the
selected meta-model. As indicated, linear regression remains the most popular choice
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for model construction because of its simplicity. When the output is approximately
linear in the inputs, it should still be used. However, linear regression will often fail to
appropriately identify the importance of certain input variables that have nonlinear
effects on the analysis results; see Section 4. In these situations, a more flexible model
must be used.

There are many choices of multiple predictor nonparametric regression procedures.
Storlie and Helton [12] review some of the more traditional nonparametric regression
procedures such as locally weighted polynomial regression (LOESS), additive models
(GAMs), projection pursuit regression (PPR), and recursive partitioning (RPART).
An implementation of quadratic response surface regression (QREG) was also de-
scribed. These techniques were shown to be quite useful for SA.

There are several other more state of the art methods that are known to be
effective for modeling complex behavior including: Multivariate Adaptive Regression
Splines (MARS) [23], Random Forest (RF) [24], Gradient Boosting Machine (GBM)
[25], and Adaptive COmponent Selection and Smoothing Operator (ACOSSO) [26].
Gaussian Process (GP) models [27], [28], [11] have also become popular meta-models.
We give a description of each of these methods below.

For each of the following procedures, it is assumed that we obtain data (x1, y1), . . . , (xn, yn)
and that the data were produced through the relation

yi = f(xi) + εi, i = 1, . . . , n, (3.1)

where f is the function we wish to estimate (i.e. the computer model) and εi is
an error term. As indicated earlier, the deterministic computer model also fits this
framework since the actual model is most often observed with a small amount of
numerical error.

3.1 Multivariate Adaptive Regression Splines

The MARS procedure was made popular by Friedman [23]. This method is essentially
a combination of spline regression, stepwise model fitting, and recursive partitioning.
We first describe the MARS procedure for only one input variable, x, and then gener-
alize to the multiple input setting. Thus, the data we observe is (x1, y1), . . . , (xn, yn).
For the one input setting, we employ a slight abuse of notation by using xi to denote
the ith observed value of a univariate input x. In all other cases, xj refers to the jth

element of the input vector x.
Consider a spline function along the input variable x (usually linear splines are

used) with knots at all the distinct data points, i.e.

g(x) = b0 +
n+1∑
k=1

bkφk(x), (3.2)

where φ1(x) = x, φk(x) = |x−xk−1|+, k = 2, . . . , n+1, |x|+ = x if x > 0 and 0 other-
wise, and {b0, b1, . . . , bn+1} are constants. The MARS procedure uses functions of the
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form given in Eq. (3.2) to approximate the unknown output function f . Specifically,
MARS fits a curve by adding basis functions to a model in a stepwise manner. It
starts with a mean only model, then adds the overall linear trend, φ1. From here, the
remaining basis functions are added to the model successively in a stepwise manner.
Specifically, MARS first fits a model with only the intercept term, i.e.

f̂1(x) = b̂0, (3.3)

where b̂0 = ȳ. Call this model 1. Then MARS fits the linear regression model

f̂2(x) = b̂0 + b̂1φ1(x) (3.4)

via least squares and call this model 2. Now MARS adds to model 2 the basis function,
φj, that results in the largest decrease in the Sum of Squares Error (SSE). That is,
all models of the form

f̂3,k(x) = b̂0 + b̂1φ1(x) + b̂kφk(x) (3.5)

for k = 2, . . . , n + 1 are fit via least squares and the model that reduces SSE =∑n
i=1(yi − f̂(xi))

2 the most is retained. Denote this model 3.
Now a fourth basis function is chosen to be added to model 3 to minimize the SSE.

This process is repeated until M basis functions (including the intercept) have been
added to the model, where M ≤ n is a user defined parameter. The exact value of M
will not have much effect on the final estimate as long as it is chosen large enough.
In this presentation, M is set to min{n, 200}.

At this point, the MARS procedure considers stepwise deletion of basis functions.
That is, the current model, fM , has an intercept term, a linear trend term and M −2
other basis functions. Now consider the possible removal of each one of these M − 2
basis functions. The basis function whose removal will result in the smallest increase
in SSE is chosen to be deleted from the model. Typically, the intercept and linear
trend, φ1, are not considered candidates for removal. This process is continued until
all basis functions have been deleted from the model and only the linear regression
model Eq. (3.4) remains.

When this entire process is completed 2M − 2 models have been built (one at
each stage) during this stepwise procedure. Each of these models is a candidate for
the final model. To choose the “best” model, the generalized cross validation (GCV)
score is calculated for each candidate model. Let GCVl denote the GCV score for the
lth model in the stepwise construction, l = 1, . . . , 2M − 2. This quantity is defined as

GCVl = SSEl/(1− (νml + 1)/n), (3.6)

where ml and SSEl are the number of basis functions and the SSE for the lth model,
respectively and ν is a penalty (or cost) per basis function. The user defined param-
eter, ν, essentially acts as a smoothing parameter. That is, smaller values of ν result
in smaller models (i.e. fewer basis functions), while larger values of ν result in larger
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models. Hence, ν controls the trade off between model complexity and fidelity to the
data. In practice, ν is usually chosen between 2 and 4. The model (or set of basis
functions) out of the 2M −2 candidates with the smallest GCV score is chosen as the
MARS estimate.

If there is more than one predictor variable, then we switch back to the notation
that xj refers to the jth element of the vector of inputs, x. The data we observe is
(x1, y1), . . . , (xn, yn). Consider linear spline functions for each of the input variables
xj with knots at all the distinct data points, i.e.

gj(xj) =
n+1∑
l=0

bj,lφj,l(xj), (3.7)

where (i) {φj,0 = 1, φj,1, . . . , φj,n+1} is a basis for a linear spline on xj with knots at
n distinct data points and (ii) {bj,0, bj,1, . . . , bj,n+1} are constants, j = 1, . . . , p.

For purposes of illustration, assume for the moment that there are p = 2 inputs.
We wish to extend the linear spline to two dimensions by constructing a model which
allows the coefficients of the linear spline on x1, {b1,0, b1,1, . . . , b1,n+1}, to vary as a
function of x2. Specifically, let b1,l(x2) =

∑n+1
m=0 cl,mφ2,l(x2), l = 1, . . . , n + 1, so that

each coefficient for the linear spline on x1 is a linear spline on x2. Then let,

g(x) =
n+1∑
l=0

b1,l(x2)φ1,l(x1)

=
n+1∑
l=0

n+1∑
m=0

cl,mφ2,m(x2)φ1,l(x1)

= [c0,0]1 +

[
n+1∑
l=1

cl,0φ1,l(x1) +
n+1∑
l=1

c0,lφ2,l(x2)

]
2

+

[
n+1∑
l=1

n+1∑
m=1

cl,mφ1,l(x1)φ2,m(x2)

]
3

= [constant]1 + [main effects]2 + [two-way interaction]3 . (3.8)

The function g(x) is called the tensor product spline, since functions of this form can
also be constructed as the tensor product of two univariate spline spaces [23]. Notice
that the first term in Eq. (3.8) is the intercept, while the next summation includes only
functions of one variable (main effects), while the last summation includes functions
of two variables (two-way interactions).
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For general p, we can write the tensor product spline as

g(x) =
n+1∑
l1=0

n+1∑
l2=0

· · ·
n+1∑
lp=0

cl1,l2,...,lpφ1,l1(x1)φ2,l2(x2) · · ·φp,lp(xp)

= [d0]1 +

[
p∑

j=1

(
n+1∑
l=1

dj,lφj,l(xj)

)]
2

+

[
p∑

j=1

p∑
k>j

(
n+1∑
l=1

n+1∑
m=1

dj,k,l,mφj,l(xj)φk,m(xk)

)]
3+ · · ·+

n+1∑
l1=1

n+1∑
l2=1

· · ·
n+1∑
lp=1

cl1,l2,...,lpφ1,l1(x1)φ2,l2(x2) · · ·φp,lp(xp)


4

= [constant]1 + [main effects]2 + [2-way interactions]3 + [higher interactions]4 ,(3.9)

where the d0, dj,l, etc. correspond to particular values of the cl1,l2,...,lp . MARS uses
functions of the form given in Eq. (3.9) to approximate the unknown output function
f . In most instances, it is not necessary to include all terms from the full tensor
product. Often, an additive model (intercept + main effects) will sufficiently model
the data. That is, we could consider approximations for f of the form

gadd(x) = d0 +

p∑
j=1

(
n+1∑
l=1

dj,lφj,l(xj)

)
. (3.10)

More generally, we could consider the following two-way interaction spline model as
an approximation to f :

gint(x) = d0 +

p∑
j=1

(
n+1∑
l=1

dj,lφj,l(xj)

)
+

p∑
j=1

p∑
k>j

(
n+1∑
l=1

n+1∑
m=1

dj,k,l,mφj,l(xj)φk,m(xk)

)
. (3.11)

In either case (additive model or two-way interaction model), we can write the ap-
proximation as

h(x) = d0 +
K∑

l=1

dlθl(x) (3.12)

for constants dl, l = 1, . . . , K, and appropriately defined basis functions θl, where
K = p(n + 1) for the additive model in Eq. (3.10) and K = p(n + 1) +

(
p
2

)
(n + 1)2 for

the two way interaction model in Eq. (3.11). Three way and higher order interaction
models can also be considered, but this is not common practice.

The order of the interaction desired for the resulting model must be specified. Once
this is done, the MARS algorithm proceeds exactly as in the one input variable case,
but with the representation in Eq. (3.12) in place of the representation in Eq. (3.2).
That is, MARS first fits the intercept only model,

f̂1(x) = d̂0, (3.13)
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where d̂0 = ȳ. Then MARS fits all K possible models with two basis functions:

f̂2,k(x) = d0 + dkθk(x) (3.14)

for k = 1, . . . , K via least squares. The basis function θk (from the K possible) that
gives the smallest SSE is chosen to be the one that enters the model. Once this basis
function is included, MARS looks for the next basis function to add and so on. Once
M basis functions have been added, MARS starts to remove basis functions in the
same manner as for one input variable. In the end, there are 2M + 1 possible models
and the one with the lowest GCV score is chosen as the MARS estimate.

As a side effect of this model construction, it is common that the final model will
not contain any basis functions corresponding to certain input variables. For instance,
the final model may have none of the φj,l included, effectively removing xj from the
model. Thus, MARS does automatic variable selection (meaning it automatically
includes important variables in the model and excludes unimportant ones).

Most implementations of MARS also enforce the restriction that interaction basis
functions can enter the model only after both corresponding main effect basis func-
tions are in the model (i.e. φj,lφk,m is not allowed as a candidate to enter the model
until both φj,l and φk,m have been included). In addition, it is usually the case that
the overall linear trend term φj,1 = xj must enter the model before any other φj,l,
l > 1, terms can enter. In the backwards deletion steps, the φj,1 is also not allowed
to be deleted unless all other φj,l, l > 1, are out of the model first. The implementa-
tion used here enforces both of the above restrictions, which increases efficiency and
typically results in better variable selection.

3.2 Random Forest

Random Forests (RFs) [24] are machine learning algorithms that were developed
originally as classifiers (i.e. for a response whose values are different categories or
classes). A RF classifier builds several classification trees by randomly choosing a
subset of input variables in a manner to be described below. For a given x value, the
output from the RF is the class that is the mode of the classes output by individual
trees at that x value. This concept is easily extended to regression by using regression
trees in place of classification trees and letting the output of the RF at x be the average
value of the output by individual regression trees at x.

Regression trees [29] adapt to the input space by splitting the data into disjoint
regions (also called nodes). A constant (mean of the data in that region) is then
used as the approximation within each region. Each split is made by dividing the
observations up at a cutpoint on one variable. Each split is made in a so called greedy
fashion. That is, for the first split, a variable and cutpoint along that variable are
searched for as to make for the largest increase in R2 over the mean only model. Then
each of these two created regions can be examined for the split which will again make
the largest increase in R2. This process continues until there are J regions (or nodes).
See page 267-269 of [29] for a more detailed description of regression trees.
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Specifically, the RF is constructed as detailed by Algorithm 1 below. First, let
the number of observations be n, and the number of predictor variables be p. Set
the parameter m, where m < p is the number of input variables to be used at each
node of the tree. Also set the parameter Nt to be the total number of trees to grow.
Lastly, set the parameter nr, which defines the minimum number of observations to
be allowed in each region (or node). By default in the implementation used here,
m = bp/3c and Nt = 500. The algorithm then proceeds as follows:
Algorithm 1: Construction of Random Forest (RF) Models.• For k = 1, . . . , Nt, do

1. Select a training set for this iteration by selecting n observations with re-
placement from the original n observations (i.e. take a bootstrap sample).

2. Randomly choose m of the p variables. Using these m variables and the
training set obtained in step 1, calculate the best variable and cutpoint
along that variable to split the data on as in a traditional regression tree.
This creates two nodes. The cutpoint is restricted so that each of these two
nodes has greater than nr observations.

3. For each of the two (parent) nodes created in step 2, randomly choose a
new m out of the p variables, but continue using the training set obtained
in step 1. Using only the m variables chosen in each node respectively,
calculate the best variable and cutpoint along that variable to split the data
on as in a traditional regression tree. This creates two more nodes for a
total of four nodes. Again, the cutpoints are restricted so that each of these
four nodes has greater than nr observations. If either of the parent nodes
had less than 2nr observations to begin this step then no split is made on
that node.

4. For each of the (parent) nodes created in the previous step, randomly choose
a new m out of the p variables, but continue using the training set obtained
in step 1. Again split the data in each parent node as in the previous steps
unless the parent node has fewer than 2nr observations.

5. Repeat step 4 on all of the (parent) nodes from the previous step until each
node has less than 2nr observations.

6. After step 5 we have constructed a regression tree with many nodes, each
node with less than 2nr observations. Let this regression tree be denoted
f̂k.

• The RF estimate is given as

f̂(x) =
1

Nt

Nt∑
k=1

f̂k(x). (3.15)

Random Forest is known to be an accurate meta-model in many cases. It can also
handle a large number of input variables and deal with missing data. However, there
is no variable selection performed. Because of the large number of trees involved, the
final model generally has all variables affecting predictions at least to some extent.
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3.3 Gradient Boosting Regression

Like RF, boosting was originally developed for classification purposes [30], [31]. The
underlying idea was to combine the output from many “weak” classifiers into a more
powerful committee. This has a similar flavor to RF but the concept is actually quite
different. Although boosting is applicable to a wide variety of estimation problems,
we restrict our attention here to the boosting tree, which estimates a real-valued
function. This is a special case of the Gradient Boosting Machine (GBM) framework
described in [25].

The general idea behind boosting trees is to compute a sequence of simple trees,
where each successive tree is built for the prediction of the residuals from the preceding
tree. These trees are then put together in an additive expansion to produce the final
estimator.

For a given GBM, each constituent regression tree is restricted to have only J
terminal nodes (regions). This distinguishes it from RF where each tree is grown to
the point where each node has only a few (∼ nr) observations. The trees involved
in the GBM are all relatively simple. For example, in many applications J = 2 or 3
would be sufficient This would result in an additive model or a two-way interaction
model, respectively, as splits would be allowed on at most one or two variables for
each tree in the expansion. However, Friedman suggests that there is seldom much
improvement over using J = 6 in practice (p. 324 of [29]). That being the case,
it is reasonable to use J = 6 to allow for more complex interactions should they
exist. There is also an Nt parameter corresponding to the number of trees in the
expansion. This can be considered a tuning parameter in the sense that R2 increases
as Nt increases. By increasing Nt, we can make the residuals arbitrarily small. The
value of Nt can be chosen via cross validation for example. The specific algorithm to
fit the boosting tree is as follows:
Algorithm 2: Construction of Gradient Boosting Machine (GBM) Models.

1. Fit a regression tree with J nodes to the original data set {xi, yi}n
i=1. That is,

search the data for the best variable and cutpoint along that variable to split the
data. Repeat this process on each of the two resulting subsets of the data (nodes)
to find the best variable and cutpoint to make a split in only one of the regions.
Continue until there are J nodes. Call this estimate f̂1.

2. For k = 2, . . . , Nt, do

(a) Fit a regression tree with J nodes to the data set {xi, ek−1,i}n
i=1 where

ek−1,i = yi −
∑k−1

l=1 f̂k−1(xi) are the residuals of the model fit form the
previous iteration.

(b) Call this estimate f̂k.

3. The final estimate is given as

f̂(x) =
Nt∑

k=1

f̂k(x). (3.16)
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As discussed on p. 326 of [29], the performance of the GBM can be improved
by adding a regularization or penalty term to the additive expansion. In step 2 of
Algorithm 2, the residuals would then be calculated as ei = yi−

∑k−1
l=1 νf̂k−1(xi), and

f̂(x) = ν

Nt∑
k=1

f̂k(x) (3.17)

would be used as the final estimate in step 3, where ν < 1 is controlling the “learning
rate” of the boosting tree. In [29], it is suggested that ν < 0.1 gives reasonable
performance in general. This requires Nt to be larger than with ν = 1, which adds
computing time but this strategy generally results in better estimation. We set ν =
0.01 in the implementation used here. Like RF, GBM also works well for a large
number of input variables but do not perform variable selection.

3.4 Adaptive COmponent Selection and Shrinkage Operator

The ACOSSO estimate [26] builds on smoothing spline ANOVA (SS-ANOVA) mod-
els. To facilitate the description of ACOSSO, we first review the univariate smoothing
spline, and then describe tensor product splines which underlie SS-ANOVA frame-
work.

Univariate Smoothing Splines

Again with some abuse of notation, let xi, i = 1, . . . , n, denote the ith observa-
tion of a univariate input x for the discussion of univariate smoothing splines only.
Without loss of generality, we restrict attention to the domain [0, 1]. We can al-
ways rescale the input x to this domain via a transformation. Assume that the
unknown function f to be estimated belongs to 2nd order Sobolev space S2 = {g :
g, g′ are absolutely continuous and g′′ ∈ L2[0, 1]}. The smoothing spline estimate is
given by the minimizer of

1

n

n∑
i=1

(yi − g(xi))
2 + λ

∫ 1

0

[g′′(x)]
2
dx (3.18)

over g ∈ S2. The penalty term on the right of (3.18) is an overall measure of the
magnitude of the curvature (roughness) of the function over the domain. Thus, the
tuning parameter λ controls the trade-off in the resulting estimate between smooth-
ness and fidelity to the data; large values of λ will result in smoother functions while
smaller values of λ result in rougher functions but with better agreement to the data.
Generally, λ is chosen by generalized cross validation (GCV) ([32]), m-fold CV ([33]),
or related methods (p. ?? [34], p. ?? [35]). The minimizer of Eq. (3.18) is technically
called the cubic smoothing spline because the solution can be shown to be a natural
cubic spline with knots at all of the distinct values of xi, i = 1, . . . , n p. ?? [34].
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Multidimensional Smoothing Splines

The simplest extension of smoothing splines to multiple inputs is the additive model
[35]. For instance, assume that

f ∈ Fadd = {g : g(x) =

p∑
j=1

gj(xj), gj ∈ S2}, (3.19)

so that f is a sum of univariate functions. The additive smoothing spline is the
minimizer of

1

n

n∑
i=1

(yi − f(xi))
2 +

p∑
j=1

λj

∫ 1

0

[
g′′j (xj)

]2
dxj (3.20)

over g ∈ Fadd. The minimizer of the expression in Eq. (3.20), f̂(x) =
∑p

j=1 f̂j(xj),

takes the form of a natural cubic spline for each of the functional components f̂j.
Notice that there are p tuning parameters for the additive smoothing spline. These
are generally determined one at a time by minimizing GCV score with respect to λj

with the remaining p − 1 λk, k 6= j fixed, and then iterating until convergence as in
[35].

To generalize the additive model to allow for two way interactions, we will assume
f belongs to the space

F2way = {g : g(x) =

p∑
j=1

p∑
k=j+1

gj,k(xj, xk) : gj,k ∈ S2 ⊗ S2}, (3.21)

where ⊗ represents the tensor product (p. 30-31 of [36]). For two function spaces G
and H, the tensor product space is the vector space generated by (i.e. spanning all
linear combinations of) functions of the form gh for g ∈ G and h ∈ H, i.e.

G ⊗H =

{
N∑

k=1

gkhk : gk ∈ G, hk ∈ H, k = 1, . . . , N

}
. (3.22)

For a complete treatment of tensor product splines and SS-ANOVA, see [37], [38],
[39].

We will also need some additional notation to completely specify all of the func-
tional components (main effects and two-way interactions). Let

S̄2 = {g ∈ S2 :

∫ 1

0

g(x)dx = 0} (3.23)

and

S2 ⊗ S2 = {g ∈ S2 ⊗ S2 :

∫ 1

0

g(x1, x2)dx1 =

∫ 1

0

g(x1, x2)dx2 = 0}. (3.24)
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Now any function g ∈ F2way can be written

g = b0 +

p∑
j=1

gj(xj) +

p∑
k=1

p∑
l=k+1

gk,l(xk, xl), (3.25)

where b0 is a constant, gj ∈ S̄2 and gk,l ∈ S2 ⊗ S2. The representation in Eq. (3.27)
is the functional ANOVA decomposition of g. Notice here that b0 =

∫
g(x)dx

can be interpreted as the overall “average” value of the function. However, tech-
nically b0 = Eg(x) only when x has a uniform distribution over [0, 1]p. Also, since∫ 1

0
gk,l(xk, xl)dxk =

∫ 1

0
gk,l(xk, xl)dxl = 0, the function gj is truly the main effect

function for variable xj in the sense that

gj(xj) =

∫
g(x)dx(−j) − b0, (3.26)

where dx(−j) = dx1, . . . , dxj−1, dxj+1, . . . , dxp. Additional background on the preced-
ing relationships is given in [37] and [39].

The two-way interaction smoothing spline is given by the minimizer of

1

n

n∑
i=1

(yi − f(xi))
2 +

p∑
j=1

λj

∫ 1

0

[
∂2

∂x2
j

gj(xj)

]2

dxj +

p∑
k=1

p∑
l=k+1

λk,l

∫ 1

0

∫ 1

0

[
∂4

∂x2
kx

2
l

gk,l(xk, xl)

]2

dxkdxl (3.27)

over g ∈ F2way. This penalizes the main effect functions exactly the same as be-
fore, and also penalizes the two-way interaction functions by a measure of roughness
based on a mixed 4th derivative. The minimizer of the expression in Eq. (3.27) can
be obtained via matrix algebra using results from reproducing kernel Hilbert space
(RKHS) theory; for details see [37], [39]. Notice that this is slightly different from
the penalty for the thin plate spline ([37], [38]), which is popular in spatial statistics.

Generalizing to the ACOSSO estimate

The COmponent Selection and Shrinkage Operator (COSSO) [40] penalizes on the
sum of the norms instead of the squared norms as in Eqs. (3.20) and (3.27). For ease
of presentation, we will restrict attention to the additive model for the remainder of
the section. However, all of the following discussion applies directly to the two-way
interaction model as well.

The additive COSSO estimate, f̂(x) =
∑

f̂j(xj), is given by the function f ∈ Fadd

that minimizes

1

n

n∑
i=1

(yi − f(xi))
2 + λ

p∑
j=1

{[∫ 1

0

g′j(xj)dxj

]2

+

∫ 1

0

[
g′′j (xj)

]2
dxj

}1/2

. (3.28)
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There are three key differences in the penalty term in Eq. (3.28) relative to the additive

smoothing spline of Eq. (3.20). First, there is an additional term
[∫ 1

0
g′j(xj)dxj

]2
,

which can also be written [gj(1)− gj(0)]2, that penalizes the magnitude of the overall
trend of the functional component gj. Second, in contrast to the squared semi-norm
in the additive smoothing spline, each term in the sum in the penalty in Eq. (3.28) can
be thought of as a norm over functions gj ∈ S̄2. This has a similar effect to the Least
Absolute Selection and Shrinkage Operator (LASSO) [41] for linear models in that it
encourages some of the terms in the sum to be exactly zero. These terms are norms
over the fj; when such zeros result f̂j is set to exactly zero, thus providing automatic
model selection. Third, the COSSO penalty only has one tuning parameter, which
can be chosen via GCV or similar means. It can be demonstrated analytically that the
COSSO penalty with one tuning parameter gives as much flexibility as the smoothing
spline penalty with p tuning parameters [40].

Finally, the ACOSSO is a weighted version of the COSSO, where a rescaled norm
is used as the penalty for each of the functional components. Specifically, we select
as our estimate the function f ∈ Fadd that minimizes

1

n

n∑
i=1

(yi − f(xi))
2 + λ

p∑
j=1

wj

{[∫ 1

0

g′j(xj)dxj

]2

+

∫ 1

0

[
g′′j (xj)

]2
dxj

}1/2

, (3.29)

where the wj, 0 < wj ≤ ∞, are weights that can depend on an initial estimate of f
which we denote f̃ . Our implementation of ACOSSO takes f̃ to be the traditional
smoothing spline of Eq. (3.20), which is chosen by the GCV criterion with all λj = λ.
We then use

wj =

{[∫ 1

0

f̃ ′j(xj)dxj

]2

+

∫ 1

0

[
f̃ ′′j (xj)

]2
dxj

}−1

. (3.30)

This allows for more flexible estimation (less penalty) on the functional components
that show more signal in the initial estimate. As shown in [26], this approach results
in more favorable asymptotic properties than COSSO.

The minimizer of the expression in Eq. (3.29) is obtained using an iterative
algorithm and a RKHS framework similar to that used to find the minimizer of
Eqs. (3.20) and (3.27) in [37], [39]. The optimization problem for the two-way in-
teraction model can be posed in a similar way to Eq. (3.29); see [26] for details on
this and the computation of the solution. The two-way interaction model is used in
the results of Sections 4 and 5. As it is a smoothing type method, ACOSSO works
best when the underlying function is somewhat smooth. Like the previous methods,
ACOSSO also works well when there are a large number of input variables.

3.5 Gaussian Process

The Gaussian Process (GP) for use as a meta-model in computer experiments was
first proposed by [27]; see [28] and [11] for additional examples of the use of GPs in
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conjunction with computer models. A GP is a stochastic process (random function),
Y (x), over the space x ∈ X such that for any finite set of x values, {x1, x2, . . . ,xk},

Y = [Y (x1), Y (x2), . . . , Y (xk)]
′ (3.31)

has a multivariate normal distribution. Hence, a GP is completely characterized by
its mean and covariance functions

µY (x) = E[Y (x)] (3.32)

and
KY (x, x′) = Cov(Y (x), Y (x′)), (3.33)

respectively. Typically, the meta-model is then defined as

f̂(x) = E[Y (x) | Y (x1) = y1, Y (x2) = y2, . . . , Y (xn) = yn], (3.34)

which is the mean of Y (x) given the observed values (xj, yj), j = 1, . . . , n. The

process of obtaining f̂ is often called Kriging after Daniel Gerhardus Krige [42].
Since Y (x) is Gaussian, the expression for f̂ can be given explicitly as

f̂(x) = µY (x) + γΣ−1(y − µ), (3.35)

where
γ = [KY (x1, x), KY (x2, x), . . . , KY (xn, x)] , (3.36)

Σ =


KY (x1, x1) KY (x1, x2) · · · KY (x1, xn)
KY (x2, x1) KY (x2, x2) · · · KY (x2, xn)

...
...

. . .
...

KY (xn, x1) KY (xn, x2) · · · KY (xn, xn)

 , (3.37)

y = [y1, y2, . . . , yn]′ , (3.38)

µ = [µY (x1), µY (x2) . . . , µY (xn)]′ , (3.39)

and the (xj, yj), j = 1, . . . , n are the previously indicated observed values p. 160-161
[43].

It is possible to assume a constant mean GP and let any trend in the output be
accounted for as part of the random process. It is more common, however, to assume
that the mean function is linear in the individual xj. That is,

µY (x) = β0 + β1x1 + · · ·+ βpxp, (3.40)

where the βj are unknown parameters that need to be estimated from the data.
There are many possible covariance structures one can use; see Section 2 of [44]

for a discussion. Here we focus on one very popular class of covariances, the powered
exponential family ([45], [11]). This form of this covariance is

KY (x, x′) = τ 2 exp

{
−

p∑
j=1

ηj|xj − x′j|ρj

}
, (3.41)
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where τ 2 = Var(Y (x)) is the unconditional, constant (i.e. for all x) variance of the
process. The ηj, j = 1, . . . , p, referred to as the range parameters, control how far cor-
relation extends in each input direction, and serve the same purpose as the smoothing
parameters in a smoothing spline model. The power parameters 0 < ρj ≤ 2 control
the rate at which the correlation between points decays across the domain. These
may be estimated but are typically fixed at ρj = 2 resulting in an infinitely differen-
tiable process. Values of 0 < ρ < 2 result in a once differentiable process. These two
extremes can be somewhat unsettling which led others to consider the Matern family
of covariances with which the user can specify the level of differentiability [46]. How-
ever, the powered exponential has more intuitive appeal in terms of understanding
how distance controls correlation and remains the most commonly used covariance
function for the use of GPs in computer models [27], [28], [11], [47].

Often, it is also useful to allow the observations to have an independent and
identically distributed (iid) error term as in the traditional frequentist regression
models. That is, assume

Y (x) = Z(x) + ε (3.42)

where Z(x) is a GP with mean and covariance function µZ and KZ , respectively, and
ε N(0, σ2), independent for all values of x and Z(x) independent of ε. Since the
noise process ε and the actual process Z(x) are assumed independent, the covariance
function for Y (x) is obtained by adding what is called the “nugget” term to the
covariance function K. That is,

KY (x, x′) = KZ(x, x′) + σ2I{x=x′}, (3.43)

where σ2 is the variance of the iid errors, I{x=x′} is the indicator function which equals
1 if x = x′ and 0 otherwise. The σ2I{x=x′} is what is referred to as the nugget term.
The term nugget is borrowed from gold mining to describe an independent source of
variability much in the way that gold nuggets tend to be randomly scattered within
a mine. Estimation of the model parameters βj, ηj, τ 2, and σ2 commonly proceeds
via maximum likelihood estimation (MLE); see [48], [28], [49] for details.

It may seem a bit unusual at first to treat a deterministic function (like a computer
model), Y (x), as a random process. However, this is consistent with a Bayesian way
of thinking. For example, the GP that we use represents our prior belief of what
our computer model output will produce. Before the output is evaluated at the
design points, these output values are unknown to us. However, we may have some
preconceived notion about what the output will look like. For example, we may
believe that the underlying output function is “smooth” in some sense. The GP
model represents this subjective uncertainty about what the output might look like.
For instance, if we generate several realizations from the GP model unconditionally,
we would expect that the computer output would look something like one of these
realizations if or when it is produced. Thus, the GP is really our prior distribution
on the output.

One benefit to this Bayesian framework is that it produces both an expected value
of an output function f given the data and an entire posterior distribution of f given
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the observed values. That is for a set A ⊂ <k, one can obtain

Pr([f(x1), f(x2), . . . , f(xk)] ∈ A | Y = y) (3.44)

for any set of points x1, x2, . . . ,xk, where Y is the random vector of observed values
defined in Eq. (3.31) and y = [y1, . . . , yn]′ is a vector of constants. This posterior
distribution is multivariate Gaussian and is determined by calculations similar to
those underlying in Eq. (3.35) to calculate the conditional mean and variance (see
p. 160-161 of [43]). This posterior distribution can be used to develop a Bayes estimate
for Tj along with Bayesian credible sets for the Tj in lieu of T̂j from Eq. (2.1) and
the bootstrap approach described in 2.3. A 100(1 − α)% Bayesian credible set for a
parameter θ is defined to be a any set A for which Pr(θ ∈ A | Y = y) = 1− α.

To create a Bayes estimate and credible set for Tj, we need to perform the following
steps:

(1) generate two samples of size N from the x distribution in the same manner as
used to calculate Tj described on p. 178 of [8].

(2) For each sample in (1) we can generate the vector [f(x1), f(x2), . . . , f(xN)]
from the conditional distribution in Eq. (3.44) and carry out the calculation of
Tj using these values. This constitutes a sampled value of Tj from the posterior
distribution, (i.e. the distribution of Tj given Y = y).

(3) Repeat steps (1) and (2) M times to produce M independent draws of Tj,
denoted {Tj,1, . . . , Tj,M} from the posterior distribution. It is assumed that M is
reasonably large (e.g. 1000) so that the posterior distribution is well represented
by {Tj,1, . . . , Tj,M}. A Bayes estimate for Tj is given by the posterior mean of
Tj,

T̃j =
1

M

M∑
m=1

Tj,m. (3.45)

A 100(1− α)% credible set is given by

(Tj,α/2, Tj,1−α/2), (3.46)

where Tj,α/2 and Tj,1−α/2 are the α/2 and 1−α/2 sample quantiles of {Tj,1, . . . , Tj,M}.

Technically we do not have to repeat Step (1) in Step (3) but it is beneficial to do so
in order to account for Monte Carlo (i.e. sampling) error in the numerical evaluation
of the Tj used in the determination of credible intervals.

If the free parameters of the model (β′
js, τ , σ2 ,ηj’s) are estimated via MLE or by

some other means and then treated as fixed (as is suggested here), then this procedure
is referred to as an empirical Bayesian approach. It is well known, however, that this
approach can underestimate the variance in the predictions of new observations [50].
Hence, when using this approach to estimate uncertainty or sensitivity indices, we
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still recommend using the kriging estimate, f̂ , to produce the estimates of Tj as in
Eq. (2.1) in conjunction with the bootstrap procedure to produce confidence intervals.

Because of the inherent Bayesian nature of the GP approach, it is also becoming
common practice to put hyper-priors on the parameters in the mean and covariance
functions to make the procedure “fully” Bayesian (i.e. no MLE estimation involved).
We do not give details of this here, but refer the reader to [47], [45] and references
therein. When the estimation is fully Bayesian, the credible sets discussed in the
preceding paragraph become a more natural way to represent the uncertainty in the
estimate.

3.6 Discussion of Meta-Model choice

As is to be expected, the performance of the various procedures will vary widely
from one application to another. For example, quadratic regression [12] will typically
outperform more complex methods when the true surface can be well approximated
by a quadratic function. In a similar manner, ACOSSO will outperform MARS and
Recursive Partitioning [12] when the true surface is sufficiently smooth. However,
recursive partitioning is very well suited for modeling functions when discontinuities
are present. In short, all of the methods have advantages and disadvantages. And
sometimes disadvantages in one situation become advantages in another.

The one thing that seems to be the most useful in a building a meta-model for a
complex computer model with many inputs is some form of variable selection. This
becomes very important for both accuracy and computational efficiency when there
are a large number of input variables. For example, suppose there are 30 input
variables and only 5 of them significantly affect the output. This is a fairly typical
situation in the real analyses of the type illustrated in Section 5.2. A method that
incorporates variable selection like MARS will have a model estimate with perhaps
7 variables selected. Hence, Sj and Tj for the other 23 variables are 0; so we do not
need to calculate them. This eliminates a substantial portion of the computational
burden. Methods like GBM and RF work very well for approximating a surface in
higher dimensions. However, there is no variable selection inherent to the fit. Hence,
when using these methods it becomes necessary to calculate all 30 Tj values. Even
though most Tj values will be very close to zero, we will not know which Tj’s until
we calculate them.

Of course, one can always incorporate variable selection into any procedure via
some form of thresholding or a stepwise/stagewise/best subset type model selection
approach. However, with complex meta-models, it is not always clear what an appro-
priate criterion to use for model selection should be. In addition, stepwise type model
fitting can be more of a burden when a complex model fitting procedure is involved.
This is because it will typically take up much more computing time and negate any
computational savings to be gained by the variable selection.

The lack of variable selection is also part of the reason why we do not recommend
the use of standard Gaussian process type models as in [11, 51] when there is a
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large number of input variables. In addition to the inefficiency of calculating Tj

values, there is also a concern about estimation accuracy. A Gaussian process in 30
dimensions, for example, can be hampered by the curse of dimensionality. This is
due to the fact that a GP allows for 30 way and all lower order interactions to be
present in the resulting model fit. When different smoothness parameters are allowed
for each x component direction, this problem is partially alleviated but it may still be
an issue in many problems. There are, however, some very recent works pertaining to
variable selection for Gaussian processes [52, 47, 53] that might make these methods
more practical for our purposes here. This is a topic for further study.

4 Simulation Examples

In this section we investigate the properties of the proposed methodology for estimat-
ing Tj and the corresponding CIs on various scenarios where the actual values can be
calculated. We will use three example outputs also used in several previous studies
[54, 8, 55, 56]. These are:

y1 = f1(x) =
(x2 + 0.5)4

(x1 + 0.5)2
(4.1)

y2 = f2(x) = 2
10∏

j=1

|4xj − 2|+ aj

1 + aj

(4.2)

with [a1, a2, . . . , a10] = [0, 1, 2, 4, 8, 99, 99, 99, 99, 99]

y3 = f3(x) = sin(2πx1 − π) + 7 sin2(2πx2 − π) + 0.1(2πx3 − π)4 sin(2πx1 − π). (4.3)

It is assumed that the output we actually observe is subject to a small amount of
error to mimic the numerical error present in a real application, that is we observe
yj = fj(x)+εj. In all the examples, we let the εj terms be generated as iid N (0, 0.25)
variables. This produces signal to noise ratios (SNRs) of 2760:1, 8:1, and 55:1 for y1,
y2, and y3, respectively, where SNR = Var(f(x))/V ar(ε).

In this example model there are 3 output variables and 10 input variables (xj’s),
although not all of the inputs have an affect on each of the three outputs. Such
multiple outputs are usually the case in analyses of real systems (i.e., see the analyses
in [57, 7] from which the examples in Section 5.2 are derived). Further, it is also
typical of such analyses that individual results are not affected by all of the uncertain
variables under consideration.

The individual models are functions of anywhere from 2 to 10 input variables.
There are several completely uninformative inputs in output models f11 and f3. Thus,
these examples will test the ability of the methodology to identify important inputs
while also testing their ability to disregard input variables that are uninformative
to a particular analysis. The functions f1 and f2 and the associated distributional
assumptions for the xj correspond to Models 6b, 7 and 9, respectively, in [54] and
Models 2-4 in Section 3 of [56]. The functions f2 and f3 are also considered in Sections
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4 and 5 of [55]. Although, here f2 has been adjusted slightly to involve all 10 inputs
as opposed to only the first 8 inputs.

These analytic models have an advantage over the real model considered in the
next section (Section 5.2). Specifically, they are fast enough to evaluate so that
it is possible to calculate with great precision any quantity we wish such as the
true values for Sj and Tj of Eq. (1.3) and Eq. (2.5). This is not possible with a
computationally demanding model of the type considered in Section 5.2, which is
of course why we need to use a meta-model for such calculations. In short, these
examples make comparisons between truth and sensitivity results obtained with the
procedures under consideration possible.

We consider the following meta-models in this evaluation: linear regression (REG),
quadratic regression (QREG), Additive Models (GAMs), Recursive Partitioning (RPART),
Multivariate Adaptive Regression Splines (MARS), Adaptive COmponent Selection
and Smoothing Operator (ACOSSO), Random Forests (RF), Gradient Boosting Method
(GBM), Gaussian Processes (GP) with MLE and Bootstrap CIs (MLE GP), and GP
with MLE, but with Bayes estimates and Bayesian Credible Sets for Tj given in
Eqs. (3.45) and (3.46) (MLE BGP). Discussions of MARS, ACOSSO, RF, GBM, and
GP are given in Sect. 3 of this presentation, and similar discussions of REG, QREG,
GAMs, and RPART are given in Ref. [12]. All of these meta-models were constructed
using the CompModSA R package available at http://www.stat.unm.edu/ storlie.

To evaluate the various models, we generate 100 random samples (realizations)
each with a sample size of n = 300. For each of the 100 samples we evaluate the model
at the n sample points to obtain the three outputs. We then construct point estimates
and bootstrap confidence interval estimates for the Tj given by each of the above
methods for each sample. This allows us to evaluate the “long-run” performance of
each approach. We then consider the effect of varying the sample size in Section 4.4

There are several criteria which we will use to test our procedure for the various
meta-models. A typical measure to use when comparing several possible estimators
is the Root Mean Squared Error (RMSE) of the estimate. The RMSE for an estimate
T̂j is given as {E[(T̂j − Tj)

2]}1/2. In the examples of this section we can calculate the
true value Tj, and what we actually report is a Monte Carlo estimate of RMSE by

taking the average squared error over the 100 realizations. Let T̂j,k denote the value

of T̂j for the kth realization. Then,

R =

√√√√ 1

100

100∑
k=1

(T̂j,k − Tj)2 (4.4)

is the summary measure presented in this section. It is also useful to estimate the
standard deviation of R to know how variable this RMSE estimate is when comparing
its value across meta-models. An estimate of the standard deviation of R can be
calculated using a Taylor approximation

sR =
1

2R
sR2 (4.5)
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where

s2
R2 =

1

99

100∑
k=1

[
(T̂j,k − Tj)

2 −R2
]2

. (4.6)

Keep in mind when comparing results that R is not necessarily comparable across
differing values of the Tj. For instance, it would usually be considered a bigger error

for T̂j to be off by 0.10 when Tj = 0.02 than it would be if Tj = 0.70.
We also calculate the coverage and the average length of 95% bootstrap confidence

intervals calculated using the bootstrap approach described in Section 2.3. Let the
95% CI for Tj for the kth realization be denoted (T̂j,k,L, T̂j,k,U). Then,

C =
1

100

100∑
k=1

I(T̂j,k,L,T̂j,k,U )(Tj) (4.7)

L =
1

100

100∑
k=1

(T̂j,k,U − T̂j,k,L) (4.8)

define the two indicated summary measures, where IA(x) is the indicator function
defined by IA(x) = 1 if x ∈ A and 0 otherwise. We present the preceding summary
measures of for each input variable for all of the meta-models listed above for each of
the 3 outputs defined in Eqs. (4.1) - (4.3).

4.1 Output y1

The first output is monotonic across each of the inputs. What makes this SA difficult
however is the substantial interaction between x1 and x2 as can be seen in Figure 1.

Figure 2 summarizes the results for the 100 realizations of y1 with a sample size
of n = 300. Each panel is a boxplot of the 100 T̂j, j = 1, . . . , 10, from each realization
for the corresponding meta-model. Dashed lines are drawn at the corresponding true
Tj values for reference. Here we see that each meta-model does well to estimate the
Tj for the unimportant inputs (x3-x10), with the exception of MLE BGP. However,

some methods show considerable biases for T̂j of the important inputs. For instance,
GAM cannot model the important interaction between x1 and x2 in this example so
it underestimates the total effect for both inputs. TREE has a systematic upward
bias for T̂2. RF has a substantial downward bias for T̂1. GBM has a downward bias
for T̂1 and an upward bias for T̂2. QREG also has a slight downward bias for T̂1.
MARS, ACOSSO, MLE GP, and MLE BGP, all have distributions for T̂1 and T̂2

centered right near the corresponding true values. In addition MARS and ACOSSO
have T̂j distributions for uninformative variables that are concentrated around 0, with

small variability. The T̂j distributions for uninformative variables for MLE GP are
concentrated at 0, but with more variability than those for MARS and ACOSSO.
Lastly, MLE BGP has a substantial upward bias for the T̂j of the uninformative
variables.
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Figure 1: Output y1 plotted against inputs x1 and x2.

Table 1 further summarizes the results of estimating Tj for output y1. The true
Tj for each input are given in the first column for perspective. The last row of the
results for each meta-model contains the averages of the summary measures across
all of the important input variables. For this presentation, we define an input to be
important with respect to a particular output if Tj > .10. Thus, the last row gives
an overall summary of how well the meta-model performed to estimate the effect of
the important inputs. This makes it easier to compare one meta-model to another.
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Figure 2: Boxplots of the T̂j for each of the meta-models for the output y1. Dashed
lines are drawn at the corresponding true values of Tj for reference.
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Table 1. Results for y1 with 100 samples of size n = 300.
blah

Vara Tj
b RMSEc Coverd Lengthe Var Tj RMSE Cover Length

REG QREG
x1 0.48 0.17 (0.01) 0.00 (0.00) 0.15 (0.00) x1 0.48 0.04 (0.00) 0.66 (0.08) 0.10 (0.00)
x2 0.74 0.07 (0.00) 0.80 (0.07) 0.15 (0.00) x2 0.74 0.03 (0.00) 0.91 (0.05) 0.10 (0.00)
x3 0.00 0.00 (0.00) 0.97 (0.03) 0.02 (0.00) x3 0.00 0.00 (0.00) 0.97 (0.03) 0.02 (0.00)
x4 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x4 0.00 0.01 (0.00) 0.97 (0.03) 0.02 (0.00)
x5 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x5 0.00 0.00 (0.00) 0.97 (0.03) 0.02 (0.00)
x6 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x6 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
x7 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x7 0.00 0.00 (0.00) 1.00 (0.00) 0.01 (0.00)
x8 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x8 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
x9 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x9 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
x10 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) x10 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
avg.f 0.12 (0.03) 0.40 (0.28) 0.15 (0.00) avg. 0.04 (0.00) 0.79 (0.09) 0.10 (0.00)

GAM RPART
x1 0.48 0.16 (0.01) 0.00 (0.00) 0.15 (0.00) x1 0.48 0.03 (0.00) 0.91 (0.05) 0.11 (0.00)
x2 0.74 0.09 (0.01) 0.06 (0.04) 0.15 (0.00) x2 0.74 0.05 (0.00) 0.69 (0.08) 0.10 (0.00)
x3 0.00 0.01 (0.00) 1.00 (0.00) 0.04 (0.00) x3 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x4 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00) x4 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x5 0.00 0.01 (0.00) 0.94 (0.04) 0.03 (0.00) x5 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x6 0.00 0.00 (0.00) 1.00 (0.00) 0.03 (0.00) x6 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x7 0.00 0.00 (0.00) 0.94 (0.04) 0.03 (0.00) x7 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x8 0.00 0.00 (0.00) 0.97 (0.03) 0.02 (0.00) x8 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x9 0.00 0.00 (0.00) 0.91 (0.05) 0.02 (0.00) x9 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
x10 0.00 0.01 (0.00) 0.83 (0.06) 0.03 (0.00) x10 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)
avg. 0.13 (0.02) 0.03 (0.02) 0.15 (0.00) avg. 0.04 (0.01) 0.80 (0.08) 0.11 (0.01)

MARS ACOSSO
x1 0.48 0.03 (0.00) 0.97 (0.03) 0.11 (0.00) x1 0.48 0.02 (0.00) 0.86 (0.06) 0.10 (0.00)
x2 0.74 0.02 (0.00) 0.94 (0.04) 0.11 (0.01) x2 0.74 0.02 (0.00) 0.91 (0.05) 0.11 (0.00)
x3 0.00 0.02 (0.00) 0.97 (0.03) 0.08 (0.00) x3 0.00 0.01 (0.00) 1.00 (0.00) 0.03 (0.00)
x4 0.00 0.01 (0.00) 0.94 (0.04) 0.07 (0.00) x4 0.00 0.01 (0.00) 0.97 (0.03) 0.04 (0.00)
x5 0.00 0.01 (0.00) 0.97 (0.03) 0.07 (0.00) x5 0.00 0.01 (0.00) 0.97 (0.03) 0.04 (0.00)
x6 0.00 0.01 (0.00) 0.91 (0.05) 0.08 (0.00) x6 0.00 0.01 (0.00) 0.94 (0.04) 0.04 (0.00)
x7 0.00 0.02 (0.00) 1.00 (0.00) 0.08 (0.00) x7 0.00 0.01 (0.00) 0.97 (0.03) 0.04 (0.00)
x8 0.00 0.01 (0.00) 0.97 (0.03) 0.08 (0.00) x8 0.00 0.01 (0.00) 0.94 (0.04) 0.04 (0.00)
x9 0.00 0.01 (0.00) 0.97 (0.03) 0.08 (0.00) x9 0.00 0.01 (0.00) 1.00 (0.00) 0.04 (0.00)
x10 0.00 0.02 (0.00) 0.94 (0.04) 0.08 (0.00) x10 0.00 0.01 (0.00) 0.97 (0.03) 0.04 (0.00)
avg. 0.02 (0.00) 0.96 (0.01) 0.11 (0.00) avg. 0.02 (0.00) 0.89 (0.02) 0.10 (0.00)

Random Forest GBM
x1 0.48 0.15 (0.01) 0.71 (0.08) 0.17 (0.00) x1 0.48 0.08 (0.01) 1.00 (0.00) 0.26 (0.01)
x2 0.74 0.04 (0.00) 0.94 (0.04) 0.17 (0.00) x2 0.74 0.07 (0.00) 0.83 (0.06) 0.20 (0.01)
x3 0.00 0.02 (0.00) 0.86 (0.06) 0.06 (0.00) x3 0.00 0.02 (0.00) 0.97 (0.03) 0.08 (0.00)
x4 0.00 0.02 (0.00) 0.94 (0.04) 0.06 (0.00) x4 0.00 0.02 (0.00) 0.97 (0.03) 0.08 (0.00)
x5 0.00 0.02 (0.00) 0.91 (0.05) 0.06 (0.00) x5 0.00 0.01 (0.00) 0.97 (0.03) 0.08 (0.00)
x6 0.00 0.02 (0.00) 0.86 (0.06) 0.06 (0.00) x6 0.00 0.02 (0.00) 0.91 (0.05) 0.08 (0.00)
x7 0.00 0.02 (0.00) 0.89 (0.05) 0.06 (0.00) x7 0.00 0.02 (0.00) 0.97 (0.03) 0.09 (0.00)
x8 0.00 0.02 (0.00) 0.94 (0.04) 0.06 (0.00) x8 0.00 0.02 (0.00) 0.94 (0.04) 0.08 (0.00)
x9 0.00 0.02 (0.00) 0.89 (0.05) 0.06 (0.00) x9 0.00 0.02 (0.00) 0.94 (0.04) 0.08 (0.00)
x10 0.00 0.02 (0.00) 0.89 (0.05) 0.06 (0.00) x10 0.00 0.02 (0.00) 1.00 (0.00) 0.09 (0.00)
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Table 1. Results for y1 with 100 samples of size n = 300.
blah

Var Tj RMSE Cover Length Var Tj RMSE Cover Length
avg. 0.10 (0.04) 0.83 (0.08) 0.17 (0.00) avg. 0.07 (0.00) 0.91 (0.06) 0.23 (0.02)

MLE GP MLE BGP
x1 0.48 0.03 (0.00) 0.89 (0.05) 0.13 (0.00) x1 0.48 0.03 (0.00) 1.00 (0.00) 0.20 (0.00)
x2 0.74 0.03 (0.00) 0.77 (0.07) 0.12 (0.00) x2 0.74 0.03 (0.00) 1.00 (0.00) 0.20 (0.01)
x3 0.00 0.03 (0.00) 0.83 (0.06) 0.08 (0.00) x3 0.00 0.05 (0.00) 1.00 (0.00) 0.18 (0.01)
x4 0.00 0.02 (0.00) 0.89 (0.05) 0.09 (0.00) x4 0.00 0.05 (0.00) 1.00 (0.00) 0.18 (0.01)
x5 0.00 0.02 (0.00) 0.94 (0.04) 0.10 (0.00) x5 0.00 0.06 (0.00) 1.00 (0.00) 0.18 (0.01)
x6 0.00 0.02 (0.00) 0.91 (0.05) 0.09 (0.00) x6 0.00 0.05 (0.00) 1.00 (0.00) 0.18 (0.01)
x7 0.00 0.02 (0.00) 0.97 (0.03) 0.10 (0.00) x7 0.00 0.05 (0.00) 1.00 (0.00) 0.17 (0.01)
x8 0.00 0.02 (0.00) 0.94 (0.04) 0.09 (0.00) x8 0.00 0.05 (0.00) 1.00 (0.00) 0.18 (0.01)
x9 0.00 0.02 (0.00) 0.94 (0.04) 0.10 (0.00) x9 0.00 0.06 (0.00) 1.00 (0.00) 0.19 (0.01)
x10 0.00 0.03 (0.00) 0.89 (0.05) 0.09 (0.00) x10 0.00 0.05 (0.00) 1.00 (0.00) 0.19 (0.01)
avg. 0.03 (0.00) 0.83 (0.04) 0.12 (0.00) avg. 0.03 (0.00) 1.00 (0.00) 0.20 (0.00)

blah
a input variable name.
b True value of Tj.
c Monte Carlo approximation of the RMSE of T̂j as defined in (4.4) for the corresponding
c input and meta-model. The estimated standard deviation of the RMSE as defined in (4.6)
c is given in parantheses.
d Coverage as defined in (4.7) of the CI’s produced for Tj for the corresponding input and
d meta-model. The estimated standard deviation of Coverage is given in parantheses.
e Length as defined in (4.8) of the CI’s produced for Tj for the corresponding input and
e meta-model. The estimated standard deviation of Length is given in parantheses.
f Average value of each column using only the inputs with Tj ≥ 0.1.

Notice that REG has a large RMSE (0.17) for estimating the total variance of the
first input, x1. The 95% CI for T1 also has 0% coverage. This is due the inability
on the part of linear regression to model the curvature in y1 across x1 as well as th
interaction effect between x1 and x2. All of these examples are nonlinear and we
do not expect REG to perform well, but rather to serve as a baseline for how much
improvement can be made. QREG on the other hand has a much better RMSE for
T1 and a coverage of (0.66) which is still a bit lower than the nominal level (0.95).
GAM also struggles a bit with RMSE and coverage in this example because of GAM’s
inability to model the important interaction between x1 and x2. RPART does about
as well as QREG in this example with small RMSE and also has good coverage for
the CIs with the exception of that for T2 (0.69). MARS does very well in terms of
RMSE and coverage for the first two inputs. However it has somewhat larger error
and coverages lower than 0.95 for the unimportant input variables. MARS seems to
be frequently estimating the Tj = 0 to be greater than zero in this example.

ACOSSO and MARS are two of the best methods for this example with the
smallest RMSE for all of the inputs, coverages close to the nominal level, and also
small average CI lengths. ACOSSO has a very good CI coverages in general. The
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coverage for ACOSSO T1 CI is 0.86, while all of the MARS CIs maintain closer to
0.95 coverage. However, the ACOSSO CIs are all somewhat narrower (shorter average
length) than those from MARS, especially for the uninformative variables.

Random Forest has some difficulty relative to the other methods on this example.
It has RMSE and coverages for T1 and T2 much better than REG, but not nearly as
good as other methods. GBM seems to perform very similarly to Random Forest but
with better coverage on T1 CIs while the coverage for T2 is worse, even though the
average CI length for T2 is quite big (0.20).

The results for MLE GP are similar to ACOSSO and MARS in that the RMSE
and the average CI lengths are small compared to the other methods . However the
coverages for T1 (0.89) and particularly T2 (0.77) are not as high as for the other
methods. MLE BGP has low RMSE for T1 and T2 as well, but slightly higher RMSE
for the uninformative variables. The coverages are very high (1.00) for all Tj’s but
this is not necessarily good since the CI length is large (near 0.20) for all of the CIs.

4.2 Output y2

The second output is the non-monotonic Sobol g-function. Here, there is substantial
nonlinearity and interaction; see Figure 3.

x1

0.0

0.5

1.0

x2

0.0

0.5

1.0

y2

0

1

2

3

Figure 3: Plot of output y2 against inputs x1 and x2 with other inputs fixed at xj = 0.5
for j = 3, . . . , 10.

Figure 4 displays the boxplots for each meta model of the T̂j distribution, j =
1, . . . , 10 for the output y2. Dashed lines are drawn at the corresponding true Tj
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values for reference. Here we see that none of the meta-models estimate all of the Tj

without bias, although clearly some are better than others. QREG has reasonable
performance overall. It has a downward bias for T̂1 and T̂2, but the other T̂j are nicely

centered around the corresponding Tj lines. GAM also has downward bias for T̂1 and

T̂2 (likely because of the interactions involved here), as well as a slight bias for T̂3,
but is right on with the other T̂j. TREE has a substantial upward bias for T̂1 but

is pretty close to Tj with the other T̂j. Notice, however, that TREE has much more

variability in the T̂j for j > 4 than many of the other methods (e.g. ACOSSO, RF,

GBM, MLE GP). MARS has reasonable performance overall, especially for T̂2, T̂3,
and T̂4. However, T̂1 is biased low with substantial variability, and T̂j for j > 4 have
more variability than some of the other methods. ACOSSO has good performance in
general, T̂1, T̂2, and T̂3 are all slightly downward biased, but are close to the true Tj

values with little variability. Also, the T̂j for j > 4 are very tightly centered around

the true values. RF has a moderate bias for T̂1 - T̂3, and also has T̂j for j > 4 very

tightly centered around the true values. GBM has very substantial biases for T̂1 - T̂3.
MLE GP has good performance for T̂1 and T̂2 but the distribution for T̂3 is highly
variable and the T̂4 is also biased low. MLE BGP has a large bias problem for all T̂j.

Additional detail of the results for y2 is summarized in Table 2. REG really has
trouble with this example as it is highly nonlinear. However, QREG does very well
in terms of RMSE. The coverage for T1 and T2 is only 0.73 and 0.76, respectively,
but the coverages for the other inputs are near the nominal level. This is reasonable
especially when compared to the rest of the methods.
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Figure 4: Boxplots of the T̂j for each of the meta-models for the output y2. Dashed
lines are drawn at the corresponding true values of Tj for reference.
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Table 2. Results for y2 with 100 samples of size n = 300.a

blah
Var Tj RMSE Cover Length Var Tj RMSE Cover Length

REG QREG
x1 0.73 0.66 (0.02) 0.36 (0.08) 0.58 (0.06) x1 0.73 0.08 (0.01) 0.73 (0.08) 0.19 (0.00)
x2 0.22 0.29 (0.04) 0.97 (0.03) 0.58 (0.05) x2 0.22 0.05 (0.00) 0.76 (0.08) 0.15 (0.00)
x3 0.10 0.24 (0.04) 1.00 (0.00) 0.67 (0.05) x3 0.10 0.03 (0.00) 0.88 (0.06) 0.12 (0.00)
x4 0.04 0.22 (0.07) 0.97 (0.03) 0.57 (0.05) x4 0.04 0.03 (0.00) 0.85 (0.06) 0.09 (0.01)
x5 0.01 0.29 (0.07) 0.94 (0.04) 0.58 (0.05) x5 0.01 0.02 (0.00) 0.94 (0.04) 0.05 (0.01)
x6 0.00 0.20 (0.07) 1.00 (0.00) 0.51 (0.04) x6 0.00 0.02 (0.00) 0.97 (0.03) 0.05 (0.00)
x7 0.00 0.08 (0.04) 0.97 (0.03) 0.46 (0.04) x7 0.00 0.01 (0.00) 0.91 (0.05) 0.04 (0.00)
x8 0.00 0.34 (0.08) 0.94 (0.04) 0.60 (0.05) x8 0.00 0.01 (0.00) 0.91 (0.05) 0.03 (0.00)
x9 0.00 0.34 (0.08) 0.97 (0.03) 0.54 (0.05) x9 0.00 0.01 (0.00) 0.94 (0.04) 0.04 (0.00)
x10 0.00 0.16 (0.05) 1.00 (0.00) 0.53 (0.05) x10 0.00 0.01 (0.00) 0.97 (0.03) 0.05 (0.00)
avg. 0.40 (0.08) 0.78 (0.12) 0.61 (0.02) avg. 0.06 (0.01) 0.79 (0.03) 0.15 (0.01)

GAM RPART
x1 0.73 0.06 (0.01) 0.94 (0.04) 0.19 (0.00) x1 0.73 0.15 (0.01) 0.06 (0.04) 0.12 (0.00)
x2 0.22 0.06 (0.01) 0.73 (0.08) 0.15 (0.00) x2 0.22 0.09 (0.01) 0.64 (0.08) 0.21 (0.01)
x3 0.10 0.04 (0.00) 0.64 (0.08) 0.10 (0.00) x3 0.10 0.06 (0.01) 0.79 (0.07) 0.15 (0.01)
x4 0.04 0.02 (0.00) 1.00 (0.00) 0.08 (0.00) x4 0.04 0.05 (0.01) 0.88 (0.06) 0.12 (0.01)
x5 0.01 0.01 (0.00) 0.97 (0.03) 0.06 (0.00) x5 0.01 0.04 (0.01) 0.91 (0.05) 0.12 (0.01)
x6 0.00 0.01 (0.00) 0.91 (0.05) 0.04 (0.00) x6 0.00 0.05 (0.01) 0.79 (0.07) 0.12 (0.01)
x7 0.00 0.01 (0.00) 0.94 (0.04) 0.04 (0.00) x7 0.00 0.04 (0.00) 0.94 (0.04) 0.12 (0.00)
x8 0.00 0.01 (0.00) 0.85 (0.06) 0.03 (0.00) x8 0.00 0.04 (0.00) 1.00 (0.00) 0.11 (0.00)
x9 0.00 0.01 (0.00) 0.88 (0.06) 0.03 (0.00) x9 0.00 0.05 (0.01) 0.88 (0.06) 0.12 (0.01)
x10 0.00 0.01 (0.00) 0.91 (0.05) 0.04 (0.00) x10 0.00 0.05 (0.01) 0.91 (0.05) 0.11 (0.00)
avg. 0.06 (0.00) 0.77 (0.05) 0.15 (0.01) avg. 0.10 (0.02) 0.50 (0.13) 0.16 (0.02)

MARS ACOSSO
x1 0.73 0.11 (0.01) 0.85 (0.06) 0.26 (0.01) x1 0.73 0.07 (0.01) 0.79 (0.07) 0.19 (0.01)
x2 0.22 0.05 (0.01) 0.85 (0.06) 0.21 (0.01) x2 0.22 0.06 (0.01) 0.88 (0.06) 0.17 (0.00)
x3 0.10 0.05 (0.00) 0.88 (0.06) 0.18 (0.01) x3 0.10 0.04 (0.00) 0.91 (0.05) 0.14 (0.01)
x4 0.04 0.04 (0.00) 1.00 (0.00) 0.16 (0.01) x4 0.04 0.02 (0.00) 0.79 (0.07) 0.08 (0.01)
x5 0.01 0.04 (0.00) 0.97 (0.03) 0.13 (0.01) x5 0.01 0.01 (0.00) 1.00 (0.00) 0.05 (0.00)
x6 0.00 0.04 (0.01) 0.97 (0.03) 0.13 (0.01) x6 0.00 0.02 (0.00) 0.94 (0.04) 0.05 (0.00)
x7 0.00 0.04 (0.01) 0.94 (0.04) 0.12 (0.01) x7 0.00 0.01 (0.00) 0.94 (0.04) 0.04 (0.00)
x8 0.00 0.03 (0.00) 0.97 (0.03) 0.14 (0.02) x8 0.00 0.01 (0.00) 0.97 (0.03) 0.04 (0.00)
x9 0.00 0.04 (0.00) 0.97 (0.03) 0.15 (0.02) x9 0.00 0.01 (0.00) 0.94 (0.04) 0.04 (0.00)
x10 0.00 0.03 (0.00) 1.00 (0.00) 0.12 (0.01) x10 0.00 0.01 (0.00) 1.00 (0.00) 0.04 (0.00)
avg. 0.07 (0.01) 0.86 (0.01) 0.22 (0.01) avg. 0.05 (0.00) 0.86 (0.02) 0.17 (0.01)

Random Forest GBM
x1 0.73 0.06 (0.01) 0.88 (0.06) 0.31 (0.01) x1 0.73 0.20 (0.01) 0.64 (0.08) 0.31 (0.02)
x2 0.22 0.10 (0.01) 0.76 (0.08) 0.25 (0.01) x2 0.22 0.16 (0.01) 0.30 (0.08) 0.18 (0.01)
x3 0.10 0.05 (0.00) 0.85 (0.06) 0.17 (0.01) x3 0.10 0.09 (0.00) 0.30 (0.08) 0.09 (0.01)
x4 0.04 0.02 (0.00) 1.00 (0.00) 0.14 (0.01) x4 0.04 0.03 (0.00) 1.00 (0.00) 0.09 (0.00)
x5 0.01 0.02 (0.00) 1.00 (0.00) 0.12 (0.01) x5 0.01 0.01 (0.00) 1.00 (0.00) 0.08 (0.00)
x6 0.00 0.02 (0.00) 1.00 (0.00) 0.11 (0.00) x6 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.01)
x7 0.00 0.02 (0.00) 1.00 (0.00) 0.11 (0.00) x7 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.00)
x8 0.00 0.02 (0.00) 1.00 (0.00) 0.11 (0.01) x8 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.00)
x9 0.00 0.02 (0.00) 1.00 (0.00) 0.12 (0.01) x9 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.00)
x10 0.00 0.02 (0.00) 1.00 (0.00) 0.11 (0.00) x10 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.00)
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Table 2. Results for y2 with 100 samples of size n = 300.a

blah
Var Tj RMSE Cover Length Var Tj RMSE Cover Length
avg. 0.07 (0.01) 0.83 (0.02) 0.24 (0.02) avg. 0.15 (0.02) 0.41 (0.06) 0.19 (0.04)

MLE GP MLE BGP
x1 0.73 0.07 (0.01) 0.79 (0.07) 0.18 (0.01) x1 0.73 0.12 (0.01) 0.21 (0.07) 0.15 (0.00)
x2 0.22 0.06 (0.01) 0.88 (0.06) 0.21 (0.01) x2 0.22 0.32 (0.01) 0.00 (0.00) 0.19 (0.01)
x3 0.10 0.07 (0.00) 0.58 (0.09) 0.12 (0.01) x3 0.10 0.32 (0.01) 0.00 (0.00) 0.21 (0.01)
x4 0.04 0.03 (0.00) 0.94 (0.04) 0.08 (0.01) x4 0.04 0.34 (0.01) 0.00 (0.00) 0.20 (0.01)
x5 0.01 0.01 (0.00) 1.00 (0.00) 0.06 (0.00) x5 0.01 0.36 (0.01) 0.00 (0.00) 0.22 (0.00)
x6 0.00 0.01 (0.00) 0.91 (0.05) 0.05 (0.00) x6 0.00 0.37 (0.01) 0.00 (0.00) 0.21 (0.01)
x7 0.00 0.01 (0.00) 0.94 (0.04) 0.05 (0.00) x7 0.00 0.38 (0.01) 0.00 (0.00) 0.21 (0.01)
x8 0.00 0.01 (0.00) 0.94 (0.04) 0.06 (0.00) x8 0.00 0.37 (0.01) 0.00 (0.00) 0.22 (0.01)
x9 0.00 0.01 (0.00) 0.97 (0.03) 0.06 (0.00) x9 0.00 0.37 (0.01) 0.00 (0.00) 0.22 (0.01)
x10 0.00 0.01 (0.00) 0.94 (0.04) 0.05 (0.00) x10 0.00 0.37 (0.01) 0.00 (0.00) 0.23 (0.01)
avg. 0.07 (0.00) 0.75 (0.05) 0.17 (0.02) avg. 0.25 (0.04) 0.07 (0.04) 0.18 (0.01)

blah
a Table structure same as in Table 1.

GAM is also one of the best methods on this example. It has the second smallest
RMSE averaged across the important inputs (0.06 tied with QREG). It also has good
coverages for all of the inputs with the exception of T2 and T3. It appears that some
of the interactions involving x2 and x3 may be biasing these CIs.

RPART is not nearly as effective in this example as in the previous example. The
average RMSE (over the important inputs) for RPART is almost 2 times that of
QREG, GAM and ACOSSO. RPART also has very poor coverage for T1 (0.06).

MARS does fairly well again relative to the other methods in this case. It has a
little higher RMSE when estimating T1 and the uninformative Tj’s than some of the
other methods. However, the coverages for the CIs from MARS are again the most
respectable overall as they are all above 0.85.

ACOSSO also has very good overall performance again. It has the lowest average
RMSE for the important variables once again. The coverages are also good in general
although they are somewhat low for T1 (0.79) and T4 (0.79). The interval lengths are
also smaller than those for MARS and similar to the lengths for QREG and GAM.

RF has much better performance in this example compared to the previous exam-
ple. Random Forest gives results similar to MARS for RMSE and coverage, but also
has notably larger CI lengths. GBM gives disappointing results for RMSE (average
on important variables of 3 times that for ACOSSO) and coverage (as low as 0.30 for
T2 and T3), even though the CI lengths are large relative to other methods.

MLE GP again has good performance for estimating Tj. It has RMSE and CI
lengths comparable to the other top methods on this example (QREG, GAM, MARS,
ACOSSO). MLE GP also has reasonable coverage for all Tj but T3 (0.58). MLE BGP
has very poor performance on this example with RMSE for uninformative variables
30 times higher than those for MLE GP. This is a case where it is evident that the
mean of a function of a random variable is not equal to that function evaluated at the
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mean. This is essentially the difference between the Tj estimates for MLE GP (T̂j)
and MLE BGP (T̃j). MLE BGP evaluates Tj at several posterior realizations of f ,

then averages these Tj to obtain T̃j. MLE GP evaluates Tj at f̂ (the posterior average
value of f). In this example, the posterior mean for f shows very little change across
the uninformative variables giving T̂j near 0 for most of the simulations. However, the
posterior distribution of f has a fair amount of fluctuation around 0 in the amount of
signal across uninformative variables, leading to a T̃j substantially different from 0.
This example is a fairly pathological case for the Bayes framework since the function
f2 is a “V” as seen in Figure 3. The prior distribution imposed on f by the GP (with
powered exponential covariance) is stationary, meaning the unconditional variance is
the same in all regions of the domain. Thus the GP prior assumes a similar amount
of continuity and change over the entire domain, making it a poor choice for this
situation.

4.3 Output y3

The last analytic output is the non-monotonic Ishigami function; see Figures 5 and 6.
Here, the difficulty in estimation lies in the periodic nature of the relationship between
y3 and x2 and in the lack of any main effect due to x3.

The results y3 are presented in Table 3. This proved to be the most complex and
challenging test problem for many of the methods. REG has high RMSE as would
be expected, but QREG has average RMSE nearly as high in this case (0.28) and
very low coverages (0.06 for T2). This is due to the inability of QREG to model the
periodic behavior that is evident across x2. GAM is better than QREG in terms of
average RMSE but its CI coverages are also very poor in general (0% for T3).
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Figure 5: Plot of output y3 against inputs x1 and x3 with x2 fixed at 0.5.
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Figure 6: Scatterplots of output y3 against inputs x1, x2, and x3 individually.
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Table 3. Results for y3 with 100 samples of size n = 300.a

blah
Var Tj RMSE Cover Length Var Tj RMSE Cover Length

REG QREG
x1 0.55 0.36 (0.01) 0.11 (0.05) 0.30 (0.02) x1 0.55 0.27 (0.02) 0.31 (0.08) 0.37 (0.01)
x2 0.45 0.44 (0.00) 0.00 (0.00) 0.09 (0.01) x2 0.45 0.35 (0.01) 0.06 (0.04) 0.26 (0.02)
x3 0.24 0.22 (0.00) 0.06 (0.04) 0.11 (0.01) x3 0.24 0.20 (0.01) 0.34 (0.08) 0.20 (0.02)
x4 0.00 0.04 (0.02) 0.97 (0.03) 0.09 (0.01) x4 0.00 0.06 (0.01) 1.00 (0.00) 0.16 (0.01)
x5 0.00 0.02 (0.00) 1.00 (0.00) 0.08 (0.01) x5 0.00 0.05 (0.01) 0.97 (0.03) 0.16 (0.01)
x6 0.00 0.03 (0.01) 1.00 (0.00) 0.08 (0.01) x6 0.00 0.06 (0.02) 0.94 (0.04) 0.15 (0.01)
x7 0.00 0.04 (0.01) 1.00 (0.00) 0.10 (0.01) x7 0.00 0.05 (0.01) 0.97 (0.03) 0.16 (0.01)
x8 0.00 0.02 (0.00) 1.00 (0.00) 0.08 (0.01) x8 0.00 0.02 (0.01) 1.00 (0.00) 0.14 (0.01)
x9 0.00 0.04 (0.01) 0.97 (0.03) 0.09 (0.01) x9 0.00 0.06 (0.02) 0.97 (0.03) 0.15 (0.01)
x10 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.01) x10 0.00 0.03 (0.01) 1.00 (0.00) 0.14 (0.01)
avg. 0.34 (0.04) 0.06 (0.02) 0.17 (0.04) avg. 0.28 (0.03) 0.24 (0.05) 0.28 (0.03)

GAM RPART
x1 0.55 0.15 (0.01) 0.09 (0.05) 0.17 (0.01) x1 0.55 0.07 (0.01) 0.80 (0.07) 0.20 (0.00)
x2 0.45 0.12 (0.01) 0.14 (0.06) 0.17 (0.00) x2 0.45 0.08 (0.01) 0.80 (0.07) 0.25 (0.01)
x3 0.24 0.23 (0.00) 0.00 (0.00) 0.05 (0.00) x3 0.24 0.13 (0.01) 0.29 (0.08) 0.20 (0.01)
x4 0.00 0.00 (0.00) 1.00 (0.00) 0.04 (0.00) x4 0.00 0.01 (0.00) 1.00 (0.00) 0.06 (0.00)
x5 0.00 0.00 (0.00) 0.91 (0.05) 0.03 (0.00) x5 0.00 0.02 (0.00) 0.94 (0.04) 0.07 (0.00)
x6 0.00 0.00 (0.00) 0.94 (0.04) 0.02 (0.00) x6 0.00 0.02 (0.00) 0.94 (0.04) 0.06 (0.00)
x7 0.00 0.01 (0.00) 0.91 (0.05) 0.03 (0.00) x7 0.00 0.03 (0.01) 0.86 (0.06) 0.07 (0.00)
x8 0.00 0.01 (0.00) 0.89 (0.05) 0.02 (0.00) x8 0.00 0.02 (0.00) 0.97 (0.03) 0.07 (0.00)
x9 0.00 0.01 (0.00) 0.86 (0.06) 0.02 (0.00) x9 0.00 0.01 (0.00) 1.00 (0.00) 0.06 (0.00)
x10 0.00 0.00 (0.00) 0.91 (0.05) 0.03 (0.00) x10 0.00 0.02 (0.00) 0.94 (0.04) 0.06 (0.00)
avg. 0.17 (0.02) 0.08 (0.02) 0.13 (0.02) avg. 0.09 (0.01) 0.63 (0.10) 0.22 (0.01)

MARS ACOSSO
x1 0.55 0.10 (0.04) 0.89 (0.05) 0.19 (0.01) x1 0.55 0.06 (0.00) 0.74 (0.07) 0.14 (0.00)
x2 0.45 0.09 (0.04) 0.94 (0.04) 0.20 (0.02) x2 0.45 0.05 (0.00) 0.71 (0.08) 0.14 (0.00)
x3 0.24 0.11 (0.05) 0.94 (0.04) 0.17 (0.02) x3 0.24 0.07 (0.00) 0.83 (0.06) 0.11 (0.00)
x4 0.00 0.01 (0.00) 0.97 (0.03) 0.08 (0.02) x4 0.00 0.01 (0.00) 0.97 (0.03) 0.02 (0.00)
x5 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.02) x5 0.00 0.00 (0.00) 0.97 (0.03) 0.02 (0.00)
x6 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.02) x6 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
x7 0.00 0.02 (0.01) 0.94 (0.04) 0.08 (0.02) x7 0.00 0.01 (0.00) 1.00 (0.00) 0.02 (0.00)
x8 0.00 0.04 (0.02) 0.97 (0.03) 0.08 (0.02) x8 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
x9 0.00 0.02 (0.00) 0.91 (0.05) 0.07 (0.01) x9 0.00 0.01 (0.00) 0.97 (0.03) 0.02 (0.00)
x10 0.00 0.02 (0.00) 1.00 (0.00) 0.08 (0.02) x10 0.00 0.00 (0.00) 1.00 (0.00) 0.02 (0.00)
avg. 0.10 (0.00) 0.92 (0.01) 0.19 (0.01) avg. 0.06 (0.00) 0.76 (0.02) 0.13 (0.00)

Random Forest GBM
x1 0.55 0.18 (0.01) 0.49 (0.08) 0.21 (0.01) x1 0.55 0.29 (0.01) 0.17 (0.06) 0.28 (0.02)
x2 0.45 0.22 (0.01) 0.43 (0.08) 0.18 (0.01) x2 0.45 0.31 (0.01) 0.17 (0.06) 0.16 (0.02)
x3 0.24 0.14 (0.00) 0.26 (0.07) 0.11 (0.00) x3 0.24 0.09 (0.01) 0.60 (0.08) 0.17 (0.01)
x4 0.00 0.02 (0.00) 0.94 (0.04) 0.08 (0.00) x4 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.00)
x5 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.00) x5 0.00 0.01 (0.00) 0.97 (0.03) 0.08 (0.00)
x6 0.00 0.02 (0.00) 1.00 (0.00) 0.08 (0.00) x6 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.00)
x7 0.00 0.02 (0.00) 0.97 (0.03) 0.08 (0.00) x7 0.00 0.01 (0.00) 0.97 (0.03) 0.07 (0.00)
x8 0.00 0.01 (0.00) 0.94 (0.04) 0.07 (0.00) x8 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.00)
x9 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.00) x9 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.01)
x10 0.00 0.01 (0.00) 1.00 (0.00) 0.07 (0.00) x10 0.00 0.01 (0.00) 1.00 (0.00) 0.08 (0.00)
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Table 3. Results for y3 with 100 samples of size n = 300.a

blah
Var Tj RMSE Cover Length Var Tj RMSE Cover Length
avg. 0.18 (0.01) 0.39 (0.04) 0.17 (0.02) avg. 0.23 (0.04) 0.31 (0.08) 0.20 (0.02)

MLE GP MLE BGP
x1 0.55 0.08 (0.02) 0.83 (0.06) 0.28 (0.01) x1 0.55 0.05 (0.01) 0.91 (0.05) 0.15 (0.00)
x2 0.45 0.08 (0.01) 0.83 (0.06) 0.25 (0.01) x2 0.45 0.12 (0.02) 0.60 (0.08) 0.16 (0.00)
x3 0.24 0.09 (0.02) 0.69 (0.08) 0.21 (0.01) x3 0.24 0.04 (0.01) 0.97 (0.03) 0.16 (0.00)
x4 0.00 0.01 (0.00) 0.89 (0.05) 0.05 (0.00) x4 0.00 0.10 (0.02) 0.86 (0.06) 0.12 (0.01)
x5 0.00 0.01 (0.00) 0.94 (0.04) 0.05 (0.00) x5 0.00 0.10 (0.02) 0.86 (0.06) 0.12 (0.01)
x6 0.00 0.01 (0.00) 0.89 (0.05) 0.05 (0.00) x6 0.00 0.10 (0.02) 0.83 (0.06) 0.12 (0.01)
x7 0.00 0.01 (0.00) 0.94 (0.04) 0.05 (0.00) x7 0.00 0.10 (0.02) 0.83 (0.06) 0.13 (0.01)
x8 0.00 0.01 (0.00) 1.00 (0.00) 0.06 (0.00) x8 0.00 0.10 (0.02) 0.86 (0.06) 0.12 (0.01)
x9 0.00 0.02 (0.01) 0.89 (0.05) 0.06 (0.00) x9 0.00 0.11 (0.02) 0.83 (0.06) 0.13 (0.01)
x10 0.00 0.01 (0.00) 0.94 (0.04) 0.05 (0.00) x10 0.00 0.10 (0.02) 0.86 (0.06) 0.13 (0.01)
avg. 0.08 (0.00) 0.78 (0.03) 0.25 (0.01) avg. 0.07 (0.02) 0.83 (0.07) 0.16 (0.00)

blah
a Table structure same as in Table 1.

RPART is one of the better methods for RMSE and coverages are much better
than GAM or QREG in general, although there is a very low coverage for T3 (0.29).

MARS has reasonable RMSE for the Tj; slightly higher than those for ACOSSO
and MLE GP, but better than most other methods. Once again, the coverage of the
CIs produced from MARS are very close to the 95% level though for all of the inputs.
MARS is by far the most consistent method for maintaining the nominal coverages.
The CI lengths for MARS are larger than ACOSSO but smaller than those of MLE
GP.

ACOSSO is substantially better than all other methods in terms of RMSE. The
coverage for ACOSSO is below nominal for the important variables (0.74 for T1 0.71
for T2, and 0.83 for T3), but is once again at or above 0.95 for the uninformative
variables. The CI lengths are also the shortest of any method.

Random Forest has high RMSE for the three important variables, but has very
low RMSE for the uninformative inputs. The coverage is also very low for the three
important variables. GBM is again similar to Random Forest in that the estimates
and coverages are very good for the uninformative variables but poor for the important
ones.

MLE GP is one of the better methods along with MARS and ACOSSO in this
example. RMSE for the Tj is lower than MARS but higher than ACOSSO in general.
The coverages are reasonable with the exception of that for T3 (0.69). Unfortunately,
the CI lengths are a bit long though (0.28 for T1 and 0.25 for T2).

MLE BGP has more success here than in the previous example. It is one of the
better methods insofar as RMSE of Tj on the important variables. However, it once
again struggles to estimate the Tj for the uninformative variables (RMSE ≥ 0.10 for
all uninformative inputs). In addition, the coverages are not nearly as good as with
other methods ( 0.85 for all of the uninformative inputs).
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Figure 4 displays the boxplots for each meta model of the T̂j distribution, j =
1, . . . , 10 for the output y3. These plots indicate the difficulty that many of the
meta-models have with this output. The QREG plot makes it clear that QREG is
not capable of modeling this output and similarly for GAM. TREE has reasonable
performance for T̂1, and T̂2 and the T̂j for the unimportant inputs (j > 3), but T̂3 is
biased high. MARS has very good performance overall on this output. MARS has
very tightly centered distributions for T̂j around the true Tj, but there all also several

outlying values (e.g. notice the two very low points T̂1 = 0.0 and T̂1 = 0.05) indicating
that MARS is not always the most stable. ACOSSO also has good performance, but
it too has a couple outlying T̂j (one very high T̂1 and one very low T̂2). RF and GBM

both have a sizable bias for T̂1 - T̂3. MLE GP has sound performance, very similar to
ACOSSO, but the outlying T̂j are not as extreme. MLE BGP is similar to MLE GP

for T̂1 - T̂3 but has upward bias with many outlying T̂j for the unimportant variables
(j > 3).

4.4 Effect of Sample Size

Here we summarize the various methods when applied to the preceding examples with
samples sizes of n = 75, n = 150, and n = 300. The CIs based on the bootstrap
have asymptotically correct coverages under certain regularity conditions (p. 37-39
[20]). An exact treatment of these conditions for the Tj CIs is beyond the scope of
this presentation. It is, however, necessary that the meta-model used be a consistent
estimator of the true function (i.e. f̂(x)− f(x) converges in probability to 0 for each
x). Hence, we cannot expect the bootstrap CIs to have the correct coverage unless the
meta-model is appropriate and until we have a sufficiently large sample. The purpose
of the following exercise is to answer the following two questions: (i) What sample
size is necessary for bootstrap CIs to be useful?, and (ii) Are the coverages increasing
to the nominal (i.e. 95%) level as sample size increases? The values presented in
the following tables for each method are the averages across input variables of the
respective summary statistics.

Table 4 contains the results for output y1 averaged over only the important inputs
for the various sample sizes. We define an input to be important for an output if
Tj ≥ 0.1. Notice that the coverages for REG and QREG actually go down slightly
as sample size increases. This is to be expected since neither of these meta-models is
a consistent estimator for the underlying true function f1 in this case. For instance,
the function is not quadratic but the estimate f̂ from QREG is and the estimate will
have less and less variability the larger the sample size. Hence, with REG and QREG,
the larger sample size results in shorter length intervals around a biased quantity. In
fact, we might expect these coverages to decrease to zero as sample size continues to
be increased. However, for practical purposes QREG is producing CIs that are useful
for all sample sizes considered.
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Figure 7: Boxplots of the T̂j for each of the meta-models for the output y3. Dashed
lines are drawn at the corresponding true values of Tj for reference.
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Table 4: Results for y1 averaged across the important inputs with various sample
sizes.
na RMSEb Coverc Lengthd n RMSE Cover Length

REG QREG
75 0.15 (0.03) 0.70 (0.19) 0.28 (0.00) 75 0.07 (0.01) 0.79 (0.05) 0.18 (0.01)
150 0.13 (0.02) 0.47 (0.22) 0.22 (0.00) 150 0.04 (0.00) 0.92 (0.02) 0.14 (0.00)
300 0.12 (0.03) 0.40 (0.28) 0.15 (0.00) 300 0.04 (0.00) 0.79 (0.09) 0.10 (0.00)

GAM RPART
75 0.16 (0.02) 0.21 (0.05) 0.26 (0.01) 75 0.17 (0.01) 0.62 (0.06) 0.33 (0.03)
150 0.14 (0.01) 0.10 (0.00) 0.20 (0.00) 150 0.05 (0.00) 0.95 (0.00) 0.19 (0.02)
300 0.13 (0.02) 0.03 (0.02) 0.15 (0.00) 300 0.04 (0.01) 0.80 (0.08) 0.11 (0.01)

MARS ACOSSO
75 0.07 (0.01) 0.89 (0.03) 0.32 (0.00) 75 0.05 (0.01) 0.89 (0.00) 0.19 (0.01)
150 0.16 (0.04) 0.97 (0.02) 0.26 (0.00) 150 0.03 (0.00) 0.95 (0.00) 0.13 (0.00)
300 0.02 (0.00) 0.96 (0.01) 0.11 (0.00) 300 0.02 (0.00) 0.89 (0.02) 0.10 (0.00)

Random Forest GBM
75 0.18 (0.06) 0.73 (0.19) 0.43 (0.04) 75 0.22 (0.06) 0.66 (0.16) 0.40 (0.03)
150 0.13 (0.04) 0.79 (0.15) 0.29 (0.01) 150 0.11 (0.02) 0.95 (0.00) 0.35 (0.01)
300 0.10 (0.04) 0.83 (0.08) 0.17 (0.00) 300 0.07 (0.00) 0.91 (0.06) 0.23 (0.02)

MLE GP MLE BGP
75 0.05 (0.00) 0.79 (0.00) 0.16 (0.01) 75 0.05 (0.00) 0.93 (0.03) 0.20 (0.00)
150 0.03 (0.00) 0.87 (0.02) 0.14 (0.00) 150 0.03 (0.00) 1.00 (0.00) 0.20 (0.00)
300 0.03 (0.00) 0.83 (0.04) 0.12 (0.00) 300 0.03 (0.00) 1.00 (0.00) 0.20 (0.00)

blaha Sample size used to generate the data.
b Average across inputs with Tj ≥ 0.10 of the RMSE of T̂j given by the
b corresponding meta-model; estimated standard deviation of this average
b RRMSE given in parantheses.
c Average across inputs with Tj ≥ 0.10 of the coverage of CI’s generated by the
c corresponding meta-model; estimated standard deviation of this average
c coverage given in parantheses.
d Average across inputs with Tj ≥ 0.10 of the length of CI’s generated by the
d corresponding meta-model; estimated standard deviation of this average
d length given in parantheses.
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GAM has a similar issue here as well. The true function is not additive, so a GAM
model will always have a bias that does not go away as sample size increases. MARS
and ACOSSO both have good coverage at all sample sizes. Notice that the average
interval length is decreasing for these methods as sample size increases. However, the
RMSE is also decreasing fast enough to allow for the shorter intervals to maintain close
to the 95% coverage. Random Forest does not have coverages as near the nominal
level but they are increasing with sample size. The CI length is also decreasing for
Random Forest. For GBM the coverage increases to near the nominal level and the
CI length decreases as sample size increases, but not as much as with other methods.
MLE GP appears to have an increasing trend in coverage and decreasing interval
width with increasing sample size. However, the coverage does go down slightly when
moving from n = 150 to n = 300. For MLE BGP, the coverage is quite good at
all sample sizes but the CI width does not appear to be decreasing like the other
methods.

Table 5 contains the results for output y1 averaged over only the unimportant
inputs for the various sample sizes. We define an input to be unimportant for an
output if Tj < 0.01. Notice that important inputs are defined to have Tj > 0.10,
which allows some inputs to be in a grey area where they are neither unimportant
nor important. All of the methods seem to have good coverages at all sample sizes
for the unimportant inputs. The CI lengths are deceasing for most methods, but this
decrease is much less dramatic than with CI length for the important inputs since
the CI lengths for the unimportant inputs are generally much smaller.

Summaries of results for y2 and the three sample sizes for the important inputs are
presented in Table 6. The CIs based on REG are not useful here. The average length
is greater then 0.5 for each sample size making these CIs too wide to be informative.
Both GAM and QREG seem to struggle slightly with the interactions involved in
this example as the coverages for both trend downward with increasing sample size.
However, with coverages around 0.80, the CIs from QREG and GAM are still usable.
The RMSE and CI lengths are decreasing with increase in sample size. GAM and
QREG have among the shortest length CIs for any of the methods.

The coverages for RPART decline substantially as sample size is increased from
n = 75 to n = 300 (0.70 to 0.50). This is a particularly difficult function for RPART
to model since the “V” shape is not well approximated by piecewise constants. Still,
the decreasing coverage is somewhat unsettling. MARS does not have increasing
coverage but it remains relatively high (≥ 0.85) for all sample sizes and also has
decreasing RMSE and CI length as sample size increases. ACOSSO has increasing
coverage as sample size increases n = 75 to n = 300 (0.81 to 0.86). In addition the
RMSE and CI lengths are decreasing to both become very small for n = 300.

Random Forest has good coverages for all sample sizes but declines a bit as sample
size increases n = 75 to n = 300 (0.92 to 0.83). RMSE and CI lengths are decreasing
so that Random Forest appears to be performing reasonably well. GBM has a sub-
stantial drop in coverage with increasing sample size (0.94 to 0.41). This gives some
cause for concern when using GBM for CIs.
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Table 5: Results for y1 averaged across the unimportant inputs with various sample
sizes.
na RMSEb Coverc Lengthd n RMSE Cover Length

REG QREG
75 0.01 (0.00) 1.00 (0.00) 0.04 (0.00) 75 0.01 (0.00) 0.98 (0.00) 0.03 (0.00)
150 0.01 (0.00) 1.00 (0.00) 0.03 (0.00) 150 0.00 (0.00) 0.99 (0.00) 0.02 (0.00)
300 0.00 (0.00) 1.00 (0.00) 0.02 (0.00) 300 0.00 (0.00) 0.99 (0.00) 0.02 (0.00)

GAM RPART
75 0.02 (0.00) 0.90 (0.01) 0.06 (0.00) 75 0.01 (0.00) 1.00 (0.00) 0.07 (0.00)
150 0.01 (0.00) 0.95 (0.01) 0.04 (0.00) 150 0.00 (0.00) 0.99 (0.00) 0.05 (0.00)
300 0.01 (0.00) 0.95 (0.01) 0.03 (0.00) 300 0.00 (0.00) 1.00 (0.00) 0.04 (0.00)

MARS ACOSSO
75 0.02 (0.00) 1.00 (0.00) 0.13 (0.00) 75 0.01 (0.00) 0.98 (0.00) 0.04 (0.00)
150 0.06 (0.01) 0.98 (0.00) 0.16 (0.00) 150 0.01 (0.00) 0.99 (0.00) 0.04 (0.00)
300 0.01 (0.00) 0.96 (0.00) 0.08 (0.00) 300 0.01 (0.00) 0.97 (0.00) 0.04 (0.00)

Random Forest GBM
75 0.02 (0.00) 1.00 (0.00) 0.14 (0.00) 75 0.01 (0.00) 0.98 (0.00) 0.09 (0.00)
150 0.02 (0.00) 0.93 (0.01) 0.07 (0.00) 150 0.01 (0.00) 0.97 (0.00) 0.07 (0.00)
300 0.02 (0.00) 0.90 (0.00) 0.06 (0.00) 300 0.02 (0.00) 0.96 (0.00) 0.08 (0.00)

MLE GP MLE BGP
75 0.02 (0.00) 0.91 (0.01) 0.09 (0.00) 75 0.04 (0.00) 1.00 (0.00) 0.17 (0.00)
150 0.02 (0.00) 0.91 (0.01) 0.09 (0.00) 150 0.05 (0.00) 1.00 (0.00) 0.17 (0.00)
300 0.02 (0.00) 0.91 (0.01) 0.09 (0.00) 300 0.05 (0.00) 1.00 (0.00) 0.18 (0.00)

blaha Sample size used to generate the data.
b Average across inputs with Tj ≤ 0.01 of the RMSE of T̂j given by the
b corresponding meta-model; estimated standard deviation of this average
b RRMSE given in parantheses.
c Average across inputs with Tj ≤ 0.01 of the coverage of CI’s generated by the
c corresponding meta-model; estimated standard deviation of this average
c coverage given in parantheses.
d Average across inputs with Tj ≤ 0.01 of the length of CI’s generated by the
d corresponding meta-model; estimated standard deviation of this average
d length given in parantheses.
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Table 6: Results for y2 averaged across the important inputs with various sample
sizes.

n RMSE Cover Length n RMSE Cover Length
REG QREG

75 0.40 (0.07) 0.74 (0.12) 0.54 (0.01) 75 0.12 (0.01) 0.84 (0.02) 0.31 (0.03)
150 0.40 (0.08) 0.73 (0.14) 0.56 (0.01) 150 0.08 (0.01) 0.80 (0.02) 0.22 (0.01)
300 0.40 (0.08) 0.78 (0.12) 0.61 (0.02) 300 0.06 (0.01) 0.79 (0.03) 0.15 (0.01)

GAM RPART
75 0.12 (0.02) 0.82 (0.01) 0.29 (0.03) 75 0.18 (0.01) 0.70 (0.05) 0.35 (0.03)
150 0.08 (0.01) 0.79 (0.03) 0.21 (0.02) 150 0.11 (0.01) 0.59 (0.12) 0.22 (0.01)
300 0.06 (0.00) 0.77 (0.05) 0.15 (0.01) 300 0.10 (0.02) 0.50 (0.13) 0.16 (0.02)

MARS ACOSSO
75 0.13 (0.01) 0.87 (0.02) 0.39 (0.03) 75 0.28 (0.04) 0.81 (0.04) 0.53 (0.03)
150 0.10 (0.01) 0.85 (0.03) 0.28 (0.02) 150 0.11 (0.00) 0.75 (0.03) 0.23 (0.02)
300 0.07 (0.01) 0.86 (0.01) 0.22 (0.01) 300 0.05 (0.00) 0.86 (0.02) 0.17 (0.01)

Random Forest GBM
75 0.14 (0.02) 0.92 (0.01) 0.42 (0.04) 75 0.15 (0.01) 0.94 (0.02) 0.47 (0.07)
150 0.09 (0.01) 0.93 (0.04) 0.36 (0.04) 150 0.14 (0.02) 0.82 (0.07) 0.35 (0.07)
300 0.07 (0.01) 0.83 (0.02) 0.24 (0.02) 300 0.15 (0.02) 0.41 (0.06) 0.19 (0.04)

MLE GP MLE BGP
75 0.14 (0.01) 0.52 (0.07) 0.24 (0.02) 75 0.18 (0.02) 0.53 (0.04) 0.24 (0.01)
150 0.10 (0.01) 0.65 (0.04) 0.21 (0.01) 150 0.24 (0.03) 0.21 (0.05) 0.22 (0.02)
300 0.07 (0.00) 0.75 (0.05) 0.17 (0.02) 300 0.25 (0.04) 0.07 (0.04) 0.18 (0.01)

blaha Table structure same as in Table 4.

MLE GP has low coverage (0.52) at n = 75 but increases to (0.75) by n = 300.
Thus, for larger sample sizes the CIs produced from MLE GP are usable. The RMSE
and CI lengths also decrease significantly with increased sample size. MLE BGP
really struggles with this example. Coverages decrease from 0.53 when n = 75 to 0.07
when n = 300. Even more troubling is that RMSE actually increases with sample
size. As mentioned, this is a very difficult function to model with a stationary prior
distribution, leading to the poor results. However, this is reason to question the use
of this procedure in practice when there is a chance of sharp changes in the output.

Table 7 gives the results for output y2 averaged over only the unimportant inputs
for the various sample sizes. As in the previous example, the coverages for all the of
the methods are quite good, with the exception of MLE BGP, but even this increases
with sample size. All of the methods have CI length decreasing with sample size,
which is much more pronounced here than for y1. This is due to the fact that the
signal to noise ratio is much lower in this example making it harder to identify the
uninformative variables at small sample sizes.

Table 8 contains the results for y3 and the three sample sizes for the important
inputs. The coverages for REG, QREG, and GAM decrease as sample size increases.
QREG cannot model the periodic nature of the function, while GAM cannot model
the interaction between x1 and x3. In either case, the result as sample size increases
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Table 7: Results for y2 averaged across the unimportant inputs with various sample
sizes.

n RMSE Cover Length n RMSE Cover Length
REG QREG

75 0.23 (0.01) 0.98 (0.00) 0.53 (0.00) 75 0.05 (0.00) 0.95 (0.01) 0.15 (0.00)
150 0.26 (0.01) 0.97 (0.00) 0.55 (0.00) 150 0.03 (0.00) 0.96 (0.00) 0.08 (0.00)
300 0.22 (0.02) 0.98 (0.01) 0.53 (0.01) 300 0.01 (0.00) 0.94 (0.01) 0.04 (0.00)

GAM RPART
75 0.04 (0.00) 0.86 (0.01) 0.08 (0.00) 75 0.07 (0.00) 0.97 (0.00) 0.22 (0.00)
150 0.02 (0.00) 0.90 (0.01) 0.06 (0.00) 150 0.06 (0.00) 0.92 (0.00) 0.16 (0.00)
300 0.01 (0.00) 0.90 (0.01) 0.04 (0.00) 300 0.05 (0.00) 0.90 (0.02) 0.12 (0.00)

MARS ACOSSO
75 0.07 (0.00) 0.95 (0.01) 0.20 (0.00) 75 0.18 (0.01) 0.94 (0.00) 0.39 (0.01)
150 0.06 (0.00) 0.96 (0.00) 0.16 (0.00) 150 0.03 (0.00) 0.96 (0.01) 0.12 (0.00)
300 0.04 (0.00) 0.97 (0.00) 0.13 (0.00) 300 0.01 (0.00) 0.96 (0.01) 0.04 (0.00)

Random Forest GBM
75 0.05 (0.00) 1.00 (0.00) 0.29 (0.00) 75 0.03 (0.00) 1.00 (0.00) 0.30 (0.00)
150 0.03 (0.00) 1.00 (0.00) 0.21 (0.00) 150 0.01 (0.00) 1.00 (0.00) 0.16 (0.00)
300 0.02 (0.00) 1.00 (0.00) 0.11 (0.00) 300 0.01 (0.00) 1.00 (0.00) 0.08 (0.00)

MLE GP MLE BGP
75 0.09 (0.00) 0.81 (0.01) 0.14 (0.00) 75 0.21 (0.00) 0.50 (0.02) 0.25 (0.00)
150 0.03 (0.00) 0.94 (0.01) 0.09 (0.00) 150 0.34 (0.00) 0.02 (0.00) 0.26 (0.00)
300 0.01 (0.00) 0.94 (0.00) 0.06 (0.00) 300 0.37 (0.00) 0.00 (0.00) 0.22 (0.00)

blaha Table structure same as in Table 5.
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Table 8: Results for y3 averaged across the important inputs with various sample
sizes.

n RMSE Cover Length n RMSE Cover Length
REG QREG

75 0.30 (0.04) 0.49 (0.14) 0.40 (0.08) 75 0.30 (0.03) 0.62 (0.12) 0.47 (0.05)
150 0.33 (0.04) 0.24 (0.09) 0.26 (0.06) 150 0.28 (0.03) 0.51 (0.09) 0.37 (0.03)
300 0.34 (0.04) 0.06 (0.02) 0.17 (0.04) 300 0.28 (0.03) 0.24 (0.05) 0.28 (0.03)

GAM RPART
75 0.16 (0.02) 0.31 (0.06) 0.24 (0.03) 75 0.22 (0.02) 0.58 (0.06) 0.44 (0.02)
150 0.15 (0.02) 0.21 (0.06) 0.18 (0.03) 150 0.17 (0.01) 0.55 (0.03) 0.31 (0.02)
300 0.17 (0.02) 0.08 (0.02) 0.13 (0.02) 300 0.09 (0.01) 0.63 (0.10) 0.22 (0.01)

MARS ACOSSO
75 0.15 (0.01) 0.89 (0.01) 0.55 (0.02) 75 0.27 (0.03) 0.46 (0.10) 0.34 (0.06)
150 0.09 (0.00) 0.93 (0.00) 0.31 (0.01) 150 0.26 (0.02) 0.32 (0.06) 0.27 (0.05)
300 0.10 (0.00) 0.92 (0.01) 0.19 (0.01) 300 0.06 (0.00) 0.76 (0.02) 0.13 (0.00)

Random Forest GBM
75 0.22 (0.03) 0.62 (0.14) 0.41 (0.06) 75 0.28 (0.03) 0.57 (0.14) 0.44 (0.08)
150 0.22 (0.03) 0.33 (0.06) 0.27 (0.05) 150 0.26 (0.04) 0.45 (0.08) 0.31 (0.06)
300 0.18 (0.01) 0.39 (0.04) 0.17 (0.02) 300 0.23 (0.04) 0.31 (0.08) 0.20 (0.02)

MLE GP MLE BGP
75 0.23 (0.02) 0.35 (0.04) 0.32 (0.04) 75 0.23 (0.02) 0.29 (0.07) 0.22 (0.01)
150 0.16 (0.01) 0.55 (0.02) 0.26 (0.02) 150 0.16 (0.02) 0.59 (0.08) 0.19 (0.01)
300 0.08 (0.00) 0.78 (0.03) 0.25 (0.01) 300 0.07 (0.02) 0.83 (0.07) 0.16 (0.00)

blaha Table structure same as in Table 4.

is an increasingly precise (small variance) estimate around the incorrect value. This
leads to the poor coverages for larger sample sizes.

RPART has increasing coverage with sample size for y3, but coverage only in-
creases to 0.63 at n = 300. MARS once again has very good coverage at all sample
sizes with decreasing CI length as n increases. ACOSSO has poor coverage on this
example for small n, but increases to 0.76 for n = 300. The CI length and RMSE are
higher than MARS for small sample sizes on this example, but length and RMSE are
again the smallest of all the methods when n = 300.

Both Random Forest and GBM have decreasing coverage as sample size increases
for y3. The RMSE also does not go down as quickly for Random Forest and GBM as
it does for the other methods.

The coverage for MLE GP is similar to ACOSSO in that coverage is poor for
small n but increases to a reasonable level for n = 300. The decrease in RMSE is also
similar to that for ACOSSO. A notable difference, however, is that the CI length for
MLE GP does not go down nearly as much when moving from n = 150 to n = 300.
MLE BGP is also similar to ACOSSO and MLE GP. MLE BGP has poor coverage
for small n but is one of the best overall methods for y3 with n = 300.

Lastly, Table 9 displays the results of the three sample sizes for y3 for the unim-
portant inputs. This table shows results very similar to those for y1 and y2 on unim-
portant inputs for each of the methods.
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Table 9: Results for y3 averaged across the unimportant inputs with various sample
sizes.

n RMSE Cover Length n RMSE Cover Length
REG QREG

75 0.07 (0.00) 0.99 (0.00) 0.23 (0.00) 75 0.14 (0.00) 0.85 (0.01) 0.32 (0.00)
150 0.04 (0.00) 1.00 (0.00) 0.14 (0.00) 150 0.08 (0.00) 0.93 (0.00) 0.22 (0.00)
300 0.03 (0.00) 0.99 (0.00) 0.08 (0.00) 300 0.05 (0.00) 0.98 (0.00) 0.15 (0.00)

GAM RPART
75 0.02 (0.00) 0.90 (0.00) 0.05 (0.00) 75 0.08 (0.00) 0.96 (0.00) 0.23 (0.00)
150 0.01 (0.00) 0.91 (0.01) 0.04 (0.00) 150 0.04 (0.00) 0.98 (0.00) 0.14 (0.00)
300 0.01 (0.00) 0.92 (0.01) 0.03 (0.00) 300 0.02 (0.00) 0.95 (0.01) 0.06 (0.00)

MARS ACOSSO
75 0.06 (0.00) 0.98 (0.00) 0.23 (0.00) 75 0.06 (0.00) 0.93 (0.00) 0.19 (0.00)
150 0.04 (0.00) 0.99 (0.00) 0.11 (0.00) 150 0.03 (0.00) 0.98 (0.00) 0.10 (0.00)
300 0.02 (0.00) 0.97 (0.00) 0.08 (0.00) 300 0.01 (0.00) 0.99 (0.00) 0.02 (0.00)

Random Forest GBM
75 0.04 (0.00) 1.00 (0.00) 0.26 (0.00) 75 0.03 (0.00) 1.00 (0.00) 0.26 (0.00)
150 0.02 (0.00) 1.00 (0.00) 0.14 (0.00) 150 0.01 (0.00) 1.00 (0.00) 0.14 (0.00)
300 0.02 (0.00) 0.98 (0.00) 0.08 (0.00) 300 0.01 (0.00) 0.99 (0.00) 0.07 (0.00)

MLE GP MLE BGP
75 0.07 (0.00) 0.83 (0.00) 0.12 (0.00) 75 0.16 (0.00) 0.68 (0.00) 0.20 (0.00)
150 0.02 (0.00) 0.93 (0.00) 0.07 (0.00) 150 0.15 (0.00) 0.65 (0.00) 0.17 (0.00)
300 0.01 (0.00) 0.93 (0.01) 0.05 (0.00) 300 0.10 (0.00) 0.84 (0.00) 0.13 (0.00)

blaha Table structure same as in Table 5.
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4.5 Summary of Simulation Results

It appears that the methods that require the strictest assumptions (QREG and GAM)
can be among the best performers especially for small sample sizes. This is not
surprising, as these assumptions are requiring less to be estimated from the data.
Hence, a smaller sample is adequate for good estimation provided the assumptions
imposed are not badly violated by the true function. As sample size is increased,
some of the most flexible methods like GP, MARS, and ACOSSO can provide better
estimators of the Tj, although this is not universally true. ACOSSO provided the
best estimates of the Tj in terms of RMSE and narrow CIs when the sample size was
large (n = 300) in all three examples. The CI coverage was reasonable in general for
ACOSSO but was as low as 0.76 for y3. MARS gave more consistent coverages for
the CIs but also resulted in wider CIs and less accurate estimation (higher RMSE)
than ACOSSO. Both methods seem to be useful and with complementary strengths.
The MLE GP method also had good performance in general on all three examples.
The RPART, Random Forest, GBM, and MLE BGP methods all performed well in
certain cases, but were also very inconsistent in the results on the examples studied
here. On this basis, we do not recommend using these methods since better options
such as MARS, ACOSSO, and MLE GP exist.

The plot in Figure 8 gives the average RMSE for estimating Tj (averaged across
important inputs) with each of the methods versus the required computing time to
estimate Tj and produce CIs. Each method is plotted three times, one for each of the
three output examples with n = 300. This plot indicates how much computing time
is required relative to the accuracy of the individual methods. Specifically, ACOSSO,
MLE GP, and MLE BGP take roughly an order of magnitude longer than the other
methods. MARS was one of the better methods overall and is very fast to compute,
making it an attractive option for use in practice. QREG also did very well in the first
two examples. Given the ease of interpretability and speed of computation, QREG
is another good option for practical use. Although ACOSSO and MLE GP take
longer to compute than QREG and MARS, they are also consistently very good in
terms of RMSE. Thus we recommend the use of these four methods (QREG, MARS,
ACOSSO, MLE GP) to perform SA in actual analyses.

5 Practical Implementation

In this section we describe a simple yet effective strategy for the implementation of
the approaches discussed thus far to carry out an actual sensitivity analysis on a
computationally demanding model. We then provide an example sensitivity analysis
using this strategy on a real data set from the 1996 WIPP compliance certification
application (CCA).
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Figure 8: Plot of average RMSE for Tj for the important inputs (averaged within
the three simulation examples) versus the average computing time (over the 100
realizations) needed for the method. Points are labeled by meta-model name and the
output example number.
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5.1 Algorithmic Description

Suppose that there are q outputs of interest in the analysis, y = y1, . . . , yq.

1. Determine appropriate distributions for each of the inputs to describe their
uncertainty.

2. Take a sample (simple random, Latin hypercube, fixed design, etc.) from the
input variables of size n.

3. Generate the outputs, y, from the computer model at each of the n values of
the input vector, x.

Now repeat steps 4 and 5 for each of the q outputs.

4. Fit a rank regression to yk. If the R2 value of the fit is above R2
min, then use

the Standardized Rank Regression Coefficients (SRRCs) and Partial Rank Cor-
relation Coefficients (PRCCs) to summarize input variable importance. Create
bootstrap CIs for these quantities as described in Section 2.3 if desired.

5. If the R2 value of the rank regression fit is below R2
min, then fit several flexible

regression methods. For each of these methods, calculate Tj based on the meta-
model and the corresponding CIs if desired.

We recommend using four or five different flexible regression surfaces in step 5.
It has been our experience that if rank regression does not sufficiently model the
data, then it means the underlying surface is fairly complex. As such, more flexible
methods will not always agree on their respective estimates of the Tj. Hence it
is valuable to obtain several different estimates of varying complexity to gage how
trustworthy these estimates are. We suggest using QREG, MARS, ACOSSO, and
MLE GP for this purpose because (i) they cover a large spectrum of model complexity
and continuity, and (ii) their performances seemed to complement each other fairly
well in the simulations of Section 4.

The strategy above ensures that the more time consuming nonparametric meth-
ods are only used when they are needed. Some thought does need to go into the
specification of the control parameter R2

min however. This choice largely depends on
the number of outputs, the time available for analysis, and the importance of the
analysis, etc. We can only suggest that a reasonable guideline is to use R2

min some-
where in the range of [.75, .90]. In the analysis presented in the next section, we use
R2

min = .80 for example.

5.2 Example Sensitivity Analysis

The data for the example presented here comes from an uncertainty/sensitivity anal-
ysis of a model for two phase fluid flow [57, 7, 58, 59] carried out as part of the 1996
CCA for the Waste Isolation Pilot Plant (WIPP) [7]. The CCA involved p = 57
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uncertain variables, [60] with 31 of these variables used in the two-phase fluid flow
analysis considered in this section; see Appendix A.1 for definitions of the variables.
The two-phase fluid flow analysis considered six different scenarios (i.e., modeling
cases) and generated several hundred time-dependent analysis results for each mod-
eling case (i.e., see Table 1, Ref. [58], for a partial listing of these results). A small
subset of these results is considered in this presentation. In particular, the modeling
case corresponding to a drilling intrusion at 1,000 yr that penetrates both the repos-
itory and an underlying region of pressurized brine is used as an example (i.e., an E1
intrusion at 1,000 yr in the terminology of the 1996 WIPP CCA; see Table 6, [60]).

The example analysis used Latin hypercube sampling with sample size n = 300
to generate a mapping between analysis inputs and analysis results of the form
Eq. (1.1). The time-dependent result WAS PRES is analyzed at 1,000 yr and 10,000
yr. WAS PRES is the Pressure (Pa) in the waste panel penetrated by a drilling in-
trusion (i.e., in the region corresponding to Cells 596-616 in Fig. 3 of [57]). The
results at 1,000 yr are for undisturbed conditions immediately prior to the drilling
intrusion at 1,000 yr. Because of this timing, the 1,000 yr results are unaffected by
the drilling intrusion and thus are very different from the 10,000 yr results. The data
for this illustration is available at http//:www.stat.unm.edu/∼storlie/CompModSA/-

wipp data.txt. The input variables pairs (HALPRM, HALCOMP) and (ANHPRM,
ANHCOMP) are very highly correlated, thus only HALPRM and ANHPRM were
used in the presented SA.

To perform the SA on the two outputs considered here, we use the R statistical
computing software. R is an open source software very similar to S-Plus. Go to
http://cran.r-project.org/ for documentation and more information on the the use of
R. There is an R-package called ’CompModSA’ available at http://www.stat.unm.edu/ storlie

that has a function called sensitivity that can perform the procedures described in
this paper.

Pressure at 1,000 yr (WAS PRES.1K)

Table 10 gives the results of a SA performed on WAS PRES at 1,000 years (WAS PRES.1K)
by following the steps described in Section 5.1. Notice that the R2 value for rank re-
gression is 0.94, so that rank regression is all that is performed on this output variable.
These results indicate that the microbial degradation of cellulose (WMICDFLG) is
clearly the most important variable affecting the Waste Pressure at 1,000 years with
PRCC2 between 0.89 and 0.95 as indicated by the CI. After WMICDFLG, corro-
sion rate for steel (WGRCOR) and the increase in brine saturation of waste due to
capillary forces (WASTWICK) are also important variables affecting WAS PRES at
1,000 years. ANHPRM may also have a small effect, with PRCC2 values between
0.01 and 0.10. The remaining variables listed (WGRMICI, ANHBCVGP, HALPRM,
SHPRMSAP) may have some small effect on WAS PRES at 1,000 years, but do not
have a statistically significant effect (at the 0.05 level of significance for example), as
evidenced by p-values greater than 0.05 for each of these variables.
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Table 10: Results for WAS PRES.1K using Rank Regression and PRCCs

Estimated Model Summary: Rsq = 0.943, model df = 8

Input Rsq a SRRC b PRCC2 c 95% PRCC2 CI d p-val e

WMICDFLG 0.783 0.945 0.930 (0.893, 0.950) 0.000
WGRCOR 0.891 0.332 0.660 (0.578, 0.732) 0.000
WASTWICK 0.936 0.216 0.451 (0.334, 0.586) 0.000
ANHPRM 0.939 0.055 0.050 (0.007, 0.107) 0.020
WGRMICI 0.941 0.036 0.022 (0.000, 0.079) 0.200
ANHBCVGP 0.942 0.039 0.019 (0.000, 0.057) 0.080
HALPRM 0.943 0.028 0.013 (0.000, 0.080) 0.320
SHPRMSAP 0.943 0.027 0.012 (0.000, 0.050) 0.360

a Incremental (or cumulative) R2 value of the rank regression model.
b Standardized rank regression coefficient (SRRC).
c Partial rank regression correlation coefficient squared (PRCC2). This
c can be interpreted as the proportion of the remaining variance (left
c over in the rank data after including all of the other variables) that is
c explained by adding the current variable.
d CIs for PRCC2 using the nonparametric bootstrap. Specifically, the
d procedure described in Section 2.3 is used with θ = PRCC2 and F ∗

d equal to the empirical CDF.
e Bootstrap p-value for H0 : PRCC2 = 0 calculated according to
e Eq. (2.26) with PRCC2 in place of Tj.
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Pressure at 10,000 yr (WAS PRES.10K)

Tables 11-14 give the SA results for WAS PRES at 10,000 years. In this case, the
R2 = 0.20 for rank regression, so that the other more flexible meta models are then
fit to the output. The estimates of the sensitivity index Tj of bore hole permeability
(BHPERM) given by each of the four meta-models are between 0.44 and 0.70. Clearly
BHPERM is the most influential input to this analysis but there is some discrepancy
as to how much uncertainty is due to BHPERM.

The CIs from QREG (Table 11) indicate that BHPERM is responsible for 50% to
70% of the uncertainty in the Waste Pressure at 10,000 years. After this the variable
importance rankings are less certain. However, the upper confidence limits suggest
that brine pocket compressibility (BPCOMP) may account for a significant portion
(upwards of 25%) of the uncertainty. Halite permeability (HALPRM), anhydrite per-
meability (ANHPRM), and WGRCOR all may account for a significant portion (16%,
12%, and 12% respectively) of the uncertainty as well. These results are consistent
with those from ACOSSO (Table 13). ACOSSO indicates that halite porosity (HAL-
POR) may also account for as much as 12% of the uncertainty. MLE GP gives similar
estimates and CIs as well (Table 14). However, a notable difference is that MLE GP
estimates the percentage of the total uncertainty due to BHPERM to be somewhat
higher (between 69% and 92%).

The CIs from MARS (Table 12) are a too wide to be of much use in this example.
Several of the CI lengths are wider than 0.5. The CIs from the other methods are
somewhat wide as well but they are more usable. In any case, the CIs described in
this presentation are valuable especially when there is a moderate to large amount
of variability in the estimates for Tj such as in this example. Namely, the wide CIs

inform us not to blindly treat the problem as though T̂j is the true value of Tj, but
rather to rely on the CIs from QREG, ACOSSO, and MLE GP to guide any decision
making.

6 Summary and Further Work

In this presentation, we have described several nonparametric regression methods that
can be used as meta-models to calculate sensitivity measures. A bootstrap procedure
for providing confidence intervals for sensitivity measures was also proposed and stud-
ied via simulation. These simulation examples indicated that simpler models such as
quadratic regression and additive smoothing splines can work very well to estimate
sensitivity measures in some cases, especially for small sample sizes. As sample size
increases, more flexible models (MARS, ACOSSO, and MLE GP in particular) can
provide better estimation. A practical guide for implementation of these techniques
was also given.

For the purpose of SA, the meta-models that performed the best overall were
MARS, ACOSSO, and MLE GP. ACOSSO and MLE GP tend to give narrower CIs
for the total sensitivity indices, but MARS generally has better coverage for these
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Table 11: Results for WAS PRES.10K using Quadratic Regression.

Meta-model: QREG (see Sect. 2.3, Ref.[12])
Estimated Model Summary: Rsq = 0.880, model df = 89

Input Sj
a Scum

b T̂j
c 95% Tj CI d p-val e

BHPERM 0.488 0.488 0.529 (0.495, 0.699) 0.000
BPCOMP 0.093 0.581 0.166 (0.134, 0.252) 0.000
HALPRM 0.119 0.700 0.104 (0.031, 0.164) 0.000
ANHPRM 0.083 0.784 0.094 (0.030, 0.122) 0.000
WGRCOR 0.039 0.823 0.078 (0.013, 0.117) 0.000
BPMAP 0.024 0.847 0.039 (0.000, 0.099) 0.140
HALPOR 0.051 0.897 0.038 (0.000, 0.087) 0.260
SHRGSSAT 0.013 0.911 0.036 (0.000, 0.079) 0.140
BPINTPRS 0.029 0.940 0.031 (0.000, 0.087) 0.200
ANHBCVGP 0.012 0.952 0.031 (0.000, 0.082) 0.180
SHPRNHAL 0.031 0.983 0.019 (0.000, 0.084) 0.460
WMICDFLG 0.017 1.000 0.017 (0.000, 0.093) 0.520

a Estimate given in Eq. (2.6) of the stepwise proportion of
a variance explained by the input and any of its interactions
a with inputs already in the model (i.e. those listed above the
a input in question).
b Cumulative proportion of variance explained by the input
b along with all inputs already in the model. This is the sum
b of the Sj up to and including the current input.
c The estimate given in Eq. (2.1) of the proportion of the total
c variance explained by the input and any of its interactions
c with other inputs.
d Bootstrap CI for Tj as given in Eq. (2.22).
e Bootstrap p-value for H0 : Tj = 0 given in Eq. (2.26).

58



Table 12: Results for WAS PRES.10K using MARS.a

Meta-model: MARS (see Sect. 3.1)
Estimated Model Summary: Rsq = 0.940, model df = 52

Input Sj Scum T̂j 95% Tj CI p-val
BHPERM 0.407 0.407 0.546 (0.440, 0.937) 0.000
WGRCOR 0.086 0.493 0.158 (0.095, 0.313) 0.000
BPCOMP 0.083 0.576 0.154 (0.000, 0.747) 0.120
ANHPRM 0.092 0.668 0.127 (0.000, 0.691) 0.120
HALPRM 0.107 0.774 0.122 (0.000, 0.257) 0.040
BPMAP 0.048 0.823 0.050 (0.000, 0.130) 0.080
HALPOR 0.018 0.840 0.031 (0.000, 0.122) 0.280
WMICDFLG 0.018 0.858 0.025 (0.000, 0.056) 0.060
SHPRMDRZ 0.022 0.880 0.020 (0.000, 0.176) 0.180
WFBETCEL 0.003 0.883 0.020 (0.000, 0.164) 0.140
WGRMICH 0.005 0.888 0.019 (0.000, 0.316) 0.220
SALPRES 0.005 0.893 0.018 (0.000, 0.099) 0.300
WASTWICK 0.037 0.930 0.018 (0.000, 0.142) 0.220
WRBRNSAT 0.000 0.930 0.015 (0.000, 0.201) 0.380
BPINTPRS 0.025 0.955 0.012 (0.000, 0.079) 0.340

a Table structure same as in Table 11.

CIs. In difficult problems, however, such as the 29 input model with n = 300 of
Section 5.2, MARS gives CIs too wide to be useful. ACOSSO and MLE GP also take
much longer to compute (about 2 hours each on the example in Section 5.2 compared
to about 10 minutes for MARS). Therefore a reasonable strategy is to first fit a rank
regression model. If this does not provide an adequate fit, then fit a QREG model
and a MARS model. If the MARS model gives CIs that are too wide to be useful,
then fit an ACOSSO and/or a MLE GP model. This will minimize the use of the
more expensive procedures.

In this presentation, the total sensitivity index, Tj, was used as an example to
study the use of the proposed meta-model estimation and bootstrap CI approach.
It is important to recognize that this same procedure will apply to any quantity
of interest that requires a large number of computations of the output function f
(e.g. other sensitivity measures and/or uncertainty measures like quantiles, threshold
exceedence probabilities, etc.).

It is of interest to continually update this strategy as new meta-models are devel-
oped. For example, ACOSSO is very new but works quite well. There are also very
recently developed GP models that provide variable selection that may be of use in
this framework [52, 47, 53]. The bootstrap approach for CIs seems to work well on
the test cases used here. However, it can be expensive to generate a large number of
bootstrap samples depending on the method and sample size, etc. A possible alter-
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Table 13: Results for WAS PRES.10K using ACOSSO.a

Meta-model: ACOSSO (see Sect. 3.4)
Estimated Model Summary: Rsq = 0.920, model df = 110

Input Sj Scum T̂j 95% Tj CI p-val
BHPERM 0.406 0.406 0.442 (0.391, 0.649) 0.000
HALPRM 0.108 0.514 0.124 (0.038, 0.155) 0.000
BPCOMP 0.115 0.629 0.124 (0.053, 0.205) 0.000
ANHPRM 0.106 0.735 0.097 (0.022, 0.152) 0.000
WGRCOR 0.015 0.750 0.052 (0.000, 0.110) 0.050
HALPOR 0.050 0.800 0.048 (0.000, 0.117) 0.200
BPMAP 0.039 0.840 0.045 (0.000, 0.095) 0.100
ANHBCVGP 0.013 0.852 0.041 (0.000, 0.109) 0.150
WRGSSAT 0.000 0.852 0.023 (0.000, 0.047) 0.050
ANRBRSAT 0.022 0.875 0.020 (0.000, 0.069) 0.150
SHPRNHAL 0.000 0.875 0.020 (0.000, 0.084) 0.275
SHRBRSAT 0.009 0.884 0.020 (0.000, 0.067) 0.225
SHBCEXP 0.000 0.884 0.014 (0.000, 0.063) 0.525
WMICDFLG 0.036 0.920 0.010 (0.000, 0.098) 0.775
SALPRES 0.011 0.930 0.010 (0.000, 0.044) 0.250

a Table structure same as in Table 11.

native would be to derive the asymptotic distribution of T̂j as in [22] for some of the
methods.
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A Definition of Variables involved in Two-Phase

Fluid Flow Example

A.1 Input Variables

Listed below are the input variables considered in example sensitivity analyses for
Two-Phase Fluid Flow in Section 5.2 (Source: Table 1, Ref. [60])

ANHBCEXP - Brooks-Corey pore distribution parameter for anhydrite (dimensionless).
Distribution: Student’s with 5 degrees of freedom. Range: 0.491 to 0.842. Mean,
Median: 0.644, 0.644.

ANHBCVGP - Pointer variable for selection of relative permeability model for use in
anhydrite. Distribution: Discrete with 60% 0, 40% 1. Value of 0 implies Brooks-
Corey model; value of 1 implies van Genuchten-Parker model.

ANHCOMP - Bulk compressibility of anhydrite (Pa-1). Distribution: Student’s with
3 degrees of freedom. Range: 1.09 × 10−11 to 2.75 × 10−10 Pa−1. Mean, Median:
8.26 × 10−11 Pa−1, 8.26 × 10−11 Pa−1. Correlation: -0.99 rank correlation with
ANHPRM.

ANHPRM - Logarithm of anhydrite permeability (m2). Distribution: Student’s with 5
degrees of freedom. Range: -21.0 t o -17.1 (i.e., permeability range is 1× 10− 21 to
1 × 10 − 17.1 m2). Mean, Median: -18.9, -18.9. Correlation : -0.99 rank correlation
with ANHCOMP.

ANRBRSAT - Residual brine saturation in anhydrite (dimensionless). Distribution: Stu-
dent’s with 5 degrees of freedom. Range: 7.85× 10−3 to 1.74× 10−1. Mean, Median:
8.36× 10−2, 8.36× 10−2.

ANRGSSAT - Residual gas saturation in anhydrite (dimensionless). Distribution: Stu-
dent’s with 5 degrees of freedom. Range: 1.39× 10−2 to 1.79× 10−1. Mean, median:
7.71× 10−2, 7.71× 10−2

BHPRM - Logarithm of borehole permeability (m2). Distribution: Uniform. Range: -14
to -11 (i.e., permeability range is 1× 10−14 to 1× 10−11 m2). Mean, median: −12.5,
−12.5.

BPCOMP - Logarithm of bulk compressibility of brine pocket (Pa−1). Distribution: Tri-
angular. Range: -11.3 to -8.00 (i.e., bulk compressibility range is 1 × 10−11.3 to
1 × 10−8 Pa−1). Mean, mode: -9.80, -10.0. Correlation: -0.75 rank correlation with
BPPRM.

BPINTPRS - Initial pressure in brine pocket (Pa). Distribution: Triangular. Range:
1.11× 107 to 1.70× 107 Pa. Mean, mode: 1.36× 107 Pa, 1.27× 107 Pa.

BPPRM - Logarithm of intrinsic brine pocket permeability (m2). Distribution: Triangu-
lar. Range: -14.7 to -9.80 (i.e., permeability range is 1× 10−14.7 to 1× 10−9.80 m2).
Mean, mode: -12.1, -11.8. Correlation: -0.75 rank correlation with BPCOMP.
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BPVOL - Pointer variable for selection of brine pocket volume. Distribution: Discrete,
with integer values 1, 2, ..., 32 equally likely.

HALCOMP - Bulk compressibility of halite (Pa−1). Distribution: Uniform. Range:
2.94 × 10−12 to 1.92 × 10−10 Pa−1. Mean, median: 9.75 × 10−11 Pa−1, 9.75 × 10−11

Pa−1. Correlation: -0.99 rank correlation with HALPRM.

HALPOR - Halite porosity (dimensionless). Distribution: Piecewise uniform. Range:
1.0× 10−3 to 3× 10−2. Mean, median: 1.28× 10−2, 1.00× 10−2.

HALPRM - Logarithm of halite permeability (m2). Distribution: Uniform. Range: -24
to -21 (i.e., permeability range is 1 × 10−24 to 1 × 10−21 m2). Mean, median: -22.5,
-22.5. Correlation: -0.99 rank correlation with HALCOMP.

SALPRES - Initial brine pressure, without the repository being present, at a reference
point located in the center of the combined shafts at the elevation of the midpoint of
Marker Bed (MB) 139 (Pa). Distribution: Uniform. Range: 1.104×107 to 1.389×107

Pa. Mean, median: 1.247× 107 Pa, 1.247× 107 Pa.

SHBCEXP - Brooks-Corey pore distribution parameter for shaft (dimensionless). Distri-
bution: Piecewise uniform. Range: 0.11 to 8.10. Mean, median: 2.52, 0.94.

SHPRMSAP - Logarithm of permeability (m2) of asphalt component of shaft seal (m2).
Distribution: Triangular. Range: −21 to −18 (i.e., permeability range is 1 × 10−21

to 1× 10−18 m2). Mean, mode: −19.7, −20.0.

SHPRMCLY - Logarithm of permeability (m2) for clay components of shaft. Distri-
bution: Triangular. Range: −21 to −17.3 (i.e., permeability range is 1 × 10−21 to
1× 10−17.3 m2). Mean, mode: −18.9, −18.3.

SHPRMCON - Same as SHPRMASP but for concrete component of shaft seal for 0 to
400 yr. Distribution: Triangular. Range: −17.0 to −14.0 (i.e., permeability range is
1× 10−17 to 1× 10−14 m2). Mean, mode: −15.3, 15.0.

SHPRMDRZ - Logarithm of permeability (m2) of DRZ surrounding shaft. Distribution:
Triangular. Range: −17.0 to −14.0 (i.e., permeability range is 1× 10−17 to 1× 10−14

m2). Mean, mode: −15.3, −15.0.

SHPRMHAL - Pointer variable (dimensionless) used to select permeability in crushed
salt component of shaft seal at different times. Distribution: Uniform. Range: 0 to
1. Mean, mode: 0.5, 0.5. A distribution of permeability (m2) in the crushed salt
component of the shaft seal is defined for each of the following time intervals: [0, 10
yr], [10, 25 yr], [25, 50 yr], [50, 100 yr], [100, 200 yr], [200, 10000 yr]. SHPRMHAL
is used to select a permeability value from the cumulative distribution function for
permeability for each of the preceding time intervals with result that a rank correlation
of 1 exists between the permeabilities used for the individual time intervals.

SHRBRSAT - Residual brine saturation in shaft (dimensionless). Distribution: Uniform.
Range: 0 to 0.4. Mean, median: 0.2, 0.2.
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SHRGSSAT - Residual gas saturation in shaft (dimensionless). Distribution: Uniform.
Range: 0 to 0.4. Mean, median: 0.2, 0.2.

WASTWICK - Increase in brine saturation of waste due to capillary forces (dimension-
less). Distribution: Uniform. Range: 0 to 1. Mean, median: 0.5, 0.5.

WFBETCEL - Scale factor used in definition of stoichiometric coefficient for microbial gas
generation (dimensionless). Distribution: Uniform. Range: 0 to 1. Mean, median:
0.5, 0.5.

WGRCOR - Corrosion rate for steel under inundated conditions in the absence of CO2
(m/s). Distribution: Uniform. Range: 0 to 1.58× 10−14 m/s. Mean, median: 7.94×
10−15 m/s, 7.94× 10−15 m/s.

WGRMICH - Microbial degradation rate for cellulose under humid conditions (mol/kg·s).
Distribution: Uniform. Range: 0 to 1.27×10−9 mol/kg·s. Mean, median: 6.34×10−10

mol/kg·s, 6.34× 10−10 mol/kg·s.

WGRMICI - Microbial degradation rate for cellulose under inundated conditions (mol/kg·s).
Distribution: Uniform. Range: 3.17× 10−10 to 9.51× 10−9 mol/kg·s. Mean, median:
4.92× 10−9 mol/kg·s, 4.92× 10−9 mol/kg·s.

WMICDFLG - Pointer variable for microbial degradation of cellulose. Distribution: Dis-
crete, with 50% 0, 25% 1, 25% 2. WMICDFLG = 0, 1, 2 implies no microbial degra-
dation of cellulose, microbial degradation of only cellulose, microbial degradation of
cellulose, plastic, and rubber.

WRBRNSAT - Residual brine saturation in waste (dimensionless). Distribution: Uni-
form. Range: 0 to 0.552. Mean, median: 0.276, 0.276.

WRGSSAT - Residual gas saturation in waste (dimensionless). Distribution: Uniform.
Range: 0 to 0.15. Mean, median: 0.075, 0.075.
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